ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Борис Рафаилович Френкин (род. 1947) - кандидат физико-математических наук, сотрудник Московского центра непрерывного математического образования. Соавтор книг "Математика турниров" и "Задачи о турнирах". Член редколлегии сборника "Математическое просвещение", оргкомитета международного математического Турнира городов, жюри Всероссийской олимпиады по геометрии им. И.Ф.Шарыгина. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Из целых чисел от 1 до 100 удалили k чисел. Обязательно ли среди оставшихся чисел можно выбрать k различных чисел с суммой 100, если Даны целые числа $a_{1}, ..., a_{1000}$. По кругу записаны их квадраты $a_{1}^2, ..., a_{1000}^2$. Сумма каждых 41 подряд идущих квадратов на круге делится на $41^2$. Можно ли целые числа от 1 до 2004 расставить в некотором порядке так, чтобы сумма каждых десяти подряд стоящих чисел делилась на 10? Многочлен $P(x, y)$ таков, что для всякого целого $n\geqslant 0$ каждый из многочленов $P(n, y)$ и $P(x, n)$ либо тождественно равен нулю, либо имеет степень не выше $n$. |
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 183]
Натуральные числа $a$ и $b$ таковы, что $a^{n+1} + b^{n+1}$ делится на $a^n+b^n$ для бесконечного множества различных натуральных $n$. Обязательно ли тогда $a = b$?
Даны целые числа $a_{1}, ..., a_{1000}$. По кругу записаны их квадраты $a_{1}^2, ..., a_{1000}^2$. Сумма каждых 41 подряд идущих квадратов на круге делится на $41^2$.
Назовём сложностью целого числа $n$ > 1 количество сомножителей в его разложении на простые. Для каких $n$ все числа между $n$ и 2$n$ имеют сложность
Многочлен $P(x, y)$ таков, что для всякого целого $n\geqslant 0$ каждый из многочленов $P(n, y)$ и $P(x, n)$ либо тождественно равен нулю, либо имеет степень не выше $n$.
Алёша задумал натуральные числа $a, b, c$, а потом решил найти такие натуральные $x, y, z$, что $a$ = НОК($x, y), b$ = НОК($x, z), c$ = НОК($y, z$). Оказалось, что такие $x, y, z$ существуют и определены однозначно. Алёша рассказал об этом Боре и сообщил ему только числа $a$ и $b$. Докажите, что Боря может восстановить $c$.
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 183]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке