Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 183]
|
|
Сложность: 4 Классы: 8,9,10
|
В остроугольном треугольнике отметили отличные от
вершин точки пересечения описанной окружности с высотами,
проведенными из двух вершин, и биссектрисой, проведенной из
третьей вершины, после чего сам треугольник стерли. Восстановите
его.
Назовём два неравных треугольника похожими, если можно обозначить их ABC и A'B'C' так, чтобы выполнялись равенства AB = A'B', AC = A'C' и
∠B = ∠B'. Существуют ли три попарно похожих треугольника?
|
|
Сложность: 4 Классы: 7,8,9
|
Существует ли выпуклый многоугольник,
у которого каждая сторона равна какой-нибудь диагонали, а каждая
диагональ– какой-нибудь стороне?
|
|
Сложность: 4 Классы: 8,9,10
|
Турнир, в котором участвовало 20 спортсменов, судили 10 арбитров. Каждый сыграл с каждым один раз, и каждую встречу судил ровно один арбитр. После окончания каждой игры оба участника фотографировались с арбитром. Через год после турнира была найдена стопка из всех этих фотографий. Оказалось, что не про каждого можно определить, кем он является – спортсменом или арбитром. Сколько могло быть таких людей?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Найдите геометрическое место вершин треугольников с заданными ортоцентром и центром описанной окружности.
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 183]