ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Френкин Б.Р.

Борис Рафаилович Френкин (род. 1947) - кандидат физико-математических наук, сотрудник Московского центра непрерывного математического образования. Соавтор книг "Математика турниров" и "Задачи о турнирах". Член редколлегии сборника "Математическое просвещение", оргкомитета международного математического Турнира городов, жюри Всероссийской олимпиады по геометрии им. И.Ф.Шарыгина.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 181]      



Задача 110788

Темы:   [ Выпуклые многоугольники ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Против большей стороны лежит больший угол ]
Сложность: 4
Классы: 7,8,9

Существует ли выпуклый многоугольник, у которого каждая сторона равна какой-нибудь диагонали, а каждая диагональ– какой-нибудь стороне?
Прислать комментарий     Решение


Задача 111330

Тема:   [ Задачи с ограничениями ]
Сложность: 4
Классы: 8,9,10

Турнир, в котором участвовало 20 спортсменов, судили 10 арбитров. Каждый сыграл с каждым один раз, и каждую встречу судил ровно один арбитр. После окончания каждой игры оба участника фотографировались с арбитром. Через год после турнира была найдена стопка из всех этих фотографий. Оказалось, что не про каждого можно определить, кем он является – спортсменом или арбитром. Сколько могло быть таких людей?

Прислать комментарий     Решение

Задача 115781

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ ГМТ (прочее) ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9,10,11

Найдите геометрическое место вершин треугольников с заданными ортоцентром и центром описанной окружности.

Прислать комментарий     Решение

Задача 115864

Темы:   [ Основные свойства и определения правильных многогранников ]
[ Сферы (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Можно ли вписать октаэдр в додекаэдр так, чтобы каждая вершина октаэдра была вершиной додекаэдра?

Прислать комментарий     Решение

Задача 115874

Темы:   [ Вписанные и описанные окружности ]
[ ГМТ с ненулевой площадью ]
[ Соображения непрерывности ]
Сложность: 4
Классы: 8,9,10,11

На плоскости даны три параллельные прямые.
Найдите геометрическое место центров вписанных окружностей треугольников, вершины которых расположены (по одной) на этих прямых.

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .