Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 33]
|
|
Сложность: 4- Классы: 9,10
|
Числа a, b, c и d таковы, что a² +
b² + c² + d² = 4. Докажите, что (2 + a)(2 + b) ≥ cd.
|
|
Сложность: 4- Классы: 9,10
|
Сумма положительных чисел a, b, c и d равна 3. Докажите неравенство 1/a² + 1/b² + 1/c² + 1/d² ≤ 1/a²b²c²d².
|
|
Сложность: 4- Классы: 8,9,10,11
|
Сумма положительных чисел a, b, c и d равна 3. Докажите неравенство 1/a³ + 1/b³ + 1/c³ + 1/d³ ≤ 1/a³b3c³d³.
|
|
Сложность: 4- Классы: 8,9,10
|
Верно ли, что для любых трёх различных натуральных чисел a, b и c найдётся квадратный трёхчлен с целыми коэффициентами и положительным старшим коэффициентом, принимающий в некоторых целых точках значения a³, b³ и c³?
|
|
Сложность: 4- Классы: 7,8,9,10
|
Совершенное число, большее 28, делится на 7. Докажите, что оно делится
на 49.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 33]