ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Храмцов Д.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 64636

Темы:   [ Числовые таблицы и их свойства ]
[ Теория алгоритмов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Оценка + пример ]
Сложность: 4-
Классы: 10,11

Автор: Храмцов Д.

Все клетки квадратной таблицы n×n пронумерованы в некотором порядке числами от 1 до n². Петя делает ходы по следующим правилам. Первым ходом он ставит фишку в любую клетку. Каждым последующим ходом Петя может либо поставить новую фишку на какую-то клетку, либо переставить фишку из клетки с номером a ходом по горизонтали или по вертикали в клетку с номером большим, чем a. Каждый раз, когда фишка попадает в клетку, эта клетка немедленно закрашивается; ставить фишку на закрашенную клетку запрещено. Какое наименьшее количество фишек потребуется Пете, чтобы независимо от исходной нумерации он смог за несколько ходов закрасить все клетки таблицы?

Прислать комментарий     Решение

Задача 65074

Темы:   [ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

Автор: Храмцов Д.

При каком наибольшем n можно раскрасить числа 1, 2, ..., 14 в красный и синий цвета так, чтобы для каждого числа  k = 1, 2, ..., n  нашлись пара синих чисел, разность между которыми равна k, и пара красных чисел, разность между которыми тоже равна k?

Прислать комментарий     Решение

Задача 65080

Темы:   [ Перестановки и подстановки (прочее) ]
[ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 8,9

Автор: Храмцов Д.

На полке в произвольном порядке стоят десять томов энциклопедии, пронумерованных от 1 до 10. Разрешается менять местами любые два тома, между которыми стоит не меньше четырёх других томов. Всегда ли можно расставить все тома по возрастанию номеров?

Прислать комментарий     Решение

Задача 109894

Темы:   [ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
[ Перебор случаев ]
Сложность: 4-
Классы: 8,9,10

Автор: Храмцов Д.

Пусть a, b и c – попарно взаимно простые натуральные числа. Найдите все возможные значения  ,  если известно, что это число целое.

Прислать комментарий     Решение

Задача 110022

Темы:   [ Теория игр (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 7,8,9

Автор: Храмцов Д.

В коробке лежит полный набор костей домино. Два игрока по очереди выбирают из коробки по одной кости и выкладывают их на стол, прикладывая к уже выложенной цепочке с любой из двух сторон по правилам домино. Проигрывает тот, кто не может сделать очередной ход. Кто выиграет при правильной игре?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .