ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны 8 гирек весом 1,2,..,8 граммов, но неизвестно, какая из них сколько весит. Барон Мюнхгаузен утверждает, что помнит, какая из гирек сколько весит, и в доказательство своей правоты готов провести одно взвешивание, в результате которого будет однозначно установлен вес хотя бы одной из гирь. Не обманывает ли он? Из имеющихся последовательностей {bn} и {cn} (возможно, {bn} совпадает с {cn}) разрешается получать последовательности
{bn + cn}, б) в) |
Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 320]
Назовем медианой системы 2 n точек плоскости прямую, проходящую ровно через две из них, по обе стороны от которой точек этой системы поровну. Какое наименьшее количество медиан может быть у системы из 2 n точек, никакие три из которых не лежат на одной прямой?
Петя разрезал прямоугольный лист бумаги по прямой. Затем он разрезал по прямой один из получившихся кусков. Затем он проделал то же самое с одним из трёх получившихся кусков и т.д. Докажите, что после достаточного количества разрезаний можно будет выбрать среди получившихся кусков 100 многоугольников с одинаковым числом вершин (например, 100 треугольников или 100 четырёхугольников и т.д.).
Муравей ползает по замкнутому маршруту по рёбрам додекаэдра, нигде не разворачиваясь назад. Маршрут проходит ровно два раза по каждому ребру.
За круглым столом сидят десять человек, перед каждым – несколько орехов. Всего орехов – сто. По общему сигналу каждый передаёт часть своих орехов соседу справа: половину, если у него (у того, кто передаёт) было чётное число, или один орех плюс половину остатка – если нечётное число. Такая операция проделывается второй раз, затем третий и так далее, до бесконечности. Докажите, что через некоторое время у всех станет по десять орехов.
Из имеющихся последовательностей {bn} и {cn} (возможно, {bn} совпадает с {cn}) разрешается получать последовательности
{bn + cn}, б) в)
Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 320]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке