Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шаповалов А.В.

Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 319]      



Задача 108177

Темы:   [ Правильные многоугольники ]
[ Вписанные и описанные окружности ]
[ Свойства частей, полученных при разрезаниях ]
Сложность: 3+
Классы: 8,9

Правильный 1997-угольник разбит непересекающимися диагоналями на треугольники. Докажите, что среди них ровно один – остроугольный.

Прислать комментарий     Решение

Задача 109872

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9

Можно ли расставить по кругу 1995 различных натуральных чисел так, чтобы для каждых двух соседних чисел отношение большего из них к меньшему было простым числом?

Прислать комментарий     Решение

Задача 109922

Темы:   [ Выигрышные и проигрышные позиции ]
[ Делимость чисел. Общие свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 7,8,9

На доске записаны числа 1, 2, 3, ..., 1000. Двое по очереди стирают по одному числу. Игра заканчивается, когда на доске остаются два числа. Если их сумма делится на 3, то побеждает тот, кто делал первый ход, если нет – то его партнер. Кто из них выиграет при правильной игре?

Прислать комментарий     Решение

Задача 109946

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Исследование квадратного трехчлена ]
[ Алгебраические уравнения и системы уравнений (прочее) ]
Сложность: 3+
Классы: 9,10

Решите уравнение  {(x + 1)³} = x³.

Прислать комментарий     Решение

Задача 111355

Темы:   [ Кооперативные алгоритмы ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 10,11

Фокусник с завязанными глазами выдаёт зрителю 29 карточек с номерами от 1 до 29. Зритель прячет две карточки, а остальные отдаёт ассистенту фокусника. Ассистент указывает зрителю на две из них, и зритель называет номера этих карточек фокуснику (в том порядке, в каком захочет). После этого фокусник угадывает номера карточек, спрятанных у зрителя. Как фокуснику и ассистенту договориться, чтобы фокус всегда удавался?

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 319]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .