ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шаповалов А.В.

Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 316]      



Задача 116612

Темы:   [ Обыкновенные дроби ]
[ Перебор случаев ]
[ Математическая логика (прочее) ]
Сложность: 3+
Классы: 6,7

Вася написал верное утверждение:
  "В этой фразе 1/3 всех цифр – цифры 3, а 1/2 всех цифр – цифры 1".
А Коля написал фразу:
  "В этой фразе 1/... всех цифр – цифры *, доли цифр * и * одинаковы и равны 1/..., а доля всех остальных цифр составляет 1/...".
Вставьте вместо звёздочек три разные цифры, а вместо многоточий – три разных числа так, чтобы получилось верное утверждение.

Прислать комментарий     Решение

Задача 116674

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Выпуклые и невыпуклые фигуры (прочее) ]
Сложность: 3+
Классы: 7,8,9

На плоскости отмечены 100 точек, никакие три из которых не лежат на одной прямой. Саша разбивает точки на пары, после чего соединяет точки в каждой из пар отрезком. Всегда ли он может это сделать так, чтобы каждые два отрезка пересекались?

Прислать комментарий     Решение

Задача 116814

Тема:   [ Числовые таблицы и их свойства ]
Сложность: 3+
Классы: 9,10,11

В каждой клетке клетчатого квадрата 7×7 стоит по числу. Сумма чисел в каждом квадратике 2×2 и 3×3 равна 0.
Докажите, что сумма чисел в 24 клетках, расположенных по периметру квадрата, тоже равна 0.

Прислать комментарий     Решение

Задача 116959

Темы:   [ Разрезания (прочее) ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 5,6,7

Малый и Большой острова имеют прямоугольную форму и разделены на прямоугольные графства. В каждом графстве проложена дорога по одной из диагоналей. На каждом острове эти дороги образуют замкнутый путь, который ни через какую точку не проходит дважды. Вот как устроен Малый остров, где всего шесть графств (см. рис.).

Нарисуйте, как может быть устроен Большой остров, если на нём нечётное число графств. Сколько графств у вас получилось?

Прислать комментарий     Решение

Задача 116965

Темы:   [ Текстовые задачи (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3+
Классы: 6,7,8

Три квадратные дорожки с общим центром отстоят друг от друга на 1 м (см. рис.). Три муравья стартуют одновременно из левых нижних углов дорожек и бегут с одинаковой скоростью: Му и Ра против часовой стрелки, а Вей по часовой. Когда Му добежал до правого нижнего угла большой дорожки, двое других, не успев ещё сделать полного круга, находились на правых сторонах своих дорожек, и все трое оказались на одной прямой. Найдите стороны квадратов.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 316]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .