ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шаповалов А.В.

Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 323]      



Задача 67413

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Выпуклые многоугольники ]
Сложность: 4
Классы: 9,10,11

Квадрат разбили на несколько прямоугольников так, что центры прямоугольников образуют выпуклый многоугольник.
а) Обязательно ли каждый прямоугольник примыкает к стороне квадрата?
б) Может ли количество прямоугольников равняться 23?
Прислать комментарий     Решение


Задача 67501

Темы:   [ Задачи на смеси и концентрации ]
[ Процессы и операции ]
Сложность: 4
Классы: 8,9,10,11

По кругу стоят кувшины с соками, не обязательно одинакового размера. Из любого кувшина разрешается переливать любую часть сока (возможно, нисколько или весь сок) в соседний кувшин справа, так чтобы тот не переполнился и сладость смеси в нём стала равна $10\%$. Известно, что в начальный момент такое переливание удалось бы сделать из любого кувшина. Докажите, что можно сделать в каком-то порядке несколько таких переливаний (не более одного из каждого кувшина), так чтобы сладость смеси во всех непустых кувшинах стала равна $10\%$. (Сладость — это процент сахара в смеси, по весу. Сахар всегда равномерно распределён в кувшине.)
Прислать комментарий     Решение


Задача 98410

Темы:   [ Деление с остатком ]
[ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
[ Системы линейных уравнений ]
Сложность: 4
Классы: 7,8

Шайка разбойников отобрала у купца мешок монет. Каждая монета стоит целое число грошей. Оказалось, что какую бы монету ни отложить, оставшиеся монеты можно разделить между разбойниками так, чтобы каждый получил одинаковую сумму в грошах. Докажите, что если отложить одну монету, то число монет разделится на число разбойников.

Прислать комментарий     Решение

Задача 98419

Темы:   [ Процессы и операции ]
[ Задачи с ограничениями ]
[ Правило произведения ]
Сложность: 4
Классы: 7,8,9

За круглым столом были приготовлены 12 мест для жюри с указанием имени на каждом месте. Николай Николаевич, пришедший первым, по рассеянности сел не на своё, а на следующее по часовой стрелке место. Каждый член жюри, подходивший к столу после этого, занимал своё место или, если оно уже было занято, шёл вокруг стола по часовой стрелке и садился на первое свободное место. Возникшее расположение членов жюри зависит от того, в каком порядке они подходили к столу. Сколько может возникнуть различных способов рассадки жюри?

Прислать комментарий     Решение


Задача 98456

Темы:   [ Взвешивания ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Уравнения в целых числах ]
Сложность: 4
Классы: 8,9

100 гирек веса 1, 2, ..., 100 г разложили на две чаши весов так, что есть равновесие.
Докажите, что можно убрать по две гирьки с каждой чаши так, что равновесие не нарушится.

Прислать комментарий     Решение


Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 323]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .