ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шаповалов А.В.

Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 316]      



Задача 109648

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Перестройки ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Произвольные многоугольники ]
[ Четность и нечетность ]
Сложность: 5-
Классы: 10

Многоугольник можно разбить на 100 прямоугольников, но нельзя – на 99. Докажите, что его нельзя разбить на 100 треугольников.

Прислать комментарий     Решение

Задача 111344

Темы:   [ Раскраски ]
[ Деление с остатком ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
[ Обыкновенные дроби ]
Сложность: 5-
Классы: 9,10,11

Натуральные числа покрашены в N цветов. Чисел каждого цвета бесконечно много. Известно, что цвет полусуммы двух различных чисел одной чётности зависит только от цветов слагаемых.
  а) Докажите, что полусумма чисел одной чётности одного цвета всегда окрашена в тот же цвет.
  б) При каких N такая раскраска возможна?

Прислать комментарий     Решение

Задача 111694

Темы:   [ Многочлен n-й степени имеет не более n корней ]
[ Графики и ГМТ на координатной плоскости ]
[ Центральная симметрия (прочее) ]
[ Монотонность и ограниченность ]
[ Свойства коэффициентов многочлена ]
Сложность: 5-
Классы: 10,11

Многочлен P(x) с действительными коэффициентами таков, что уравнение  P(m) + P(n) = 0  имеет бесконечно много решений в целых числах m и n.
Докажите, что у графика  y = P(x)  есть центр симметрии.

Прислать комментарий     Решение

Задача 111916

Темы:   [ Теория игр (прочее) ]
[ Правильные многоугольники ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5-
Классы: 9,10,11

Дано целое число  n > 1.  Двое игроков по очереди отмечают точки на окружности: первый – красным цветом, второй – синим (отмечать одну и ту же точку дважды нельзя). Когда отмечено по n точек каждого цвета, игра заканчивается. После этого каждый игрок находит на окружности дугу наибольшей длины с концами своего цвета, на которой больше нет отмеченных точек. Игрок, у которого найденная длина больше, выиграл (в случае равенства длин дуг, а также при отсутствии таких дуг у обоих игроков – ничья). Кто из играющих может всегда выигрывать, как бы ни играл противник?

Прислать комментарий     Решение

Задача 116252

Темы:   [ Турниры и турнирные таблицы ]
[ Доказательство от противного ]
[ Принцип Дирихле (прочее) ]
[ Арифметическая прогрессия ]
[ Соображения непрерывности ]
Сложность: 5-
Классы: 8,9

Две команды шахматистов одинаковой численности сыграли матч: каждый сыграл по одному разу с каждым из другой команды. В каждой партии давали 1 очко за победу, ½ – за ничью и 0 – за поражение. В итоге команды набрали поровну очков. Докажите, что какие-то два участника матча тоже набрали поровну очков, если в обеих командах было:
  а) по 5 шахматистов;
  б) произвольное равное число шахматистов.

Прислать комментарий     Решение

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 316]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .