Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шаповалов А.В.

Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 319]      



Задача 105093

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Кубические многочлены ]
[ Теорема о промежуточном значении. Связность ]
[ Примеры и контрпримеры. Конструкции ]
[ Процессы и операции ]
Сложность: 5-
Классы: 8,9,10,11

У Феди есть три палочки. Если из них нельзя сложить треугольник, Федя укорачивает самую длинную из палочек на сумму длин двух других. Если длина палочки не обратилась в нуль и треугольник снова нельзя сложить, то Федя повторяет операцию, и т. д. Может ли этот процесс продолжаться бесконечно?

Прислать комментарий     Решение

Задача 109194

Темы:   [ Четность и нечетность ]
[ Принцип Дирихле (прочее) ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 5-
Классы: 8,9,10

У ведущего есть колода из 52 карт. Зрители хотят узнать, в каком порядке лежат карты (при этом не уточняя   сверху вниз или снизу вверх). Разрешается задавать ведущему вопросы вида "Сколько карт лежит между такой-то и такой-то картами?". Один из зрителей подсмотрел, в каком порядке лежат карты. Какое наименьшее число вопросов он должен задать, чтобы остальные зрители по ответам на эти вопросы могли узнать порядок карт в колоде?

Прислать комментарий     Решение

Задача 109198

Темы:   [ Комбинаторика орбит ]
[ Классическая комбинаторика (прочее) ]
[ Геометрические интерпретации в алгебре ]
[ Разбиения на пары и группы; биекции ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 9,10,11

Скажем, что колода из 52 карт сложена правильно, если каждая пара лежащих рядом карт совпадает по масти или достоинству, то же верно для верхней и нижней карты, и наверху лежит туз пик. Докажите, что число способов сложить колоду правильно
  а) делится на 12!;
  б) делится на 13!.

Прислать комментарий     Решение

Задача 109648

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Перестройки ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Произвольные многоугольники ]
[ Четность и нечетность ]
Сложность: 5-
Классы: 10

Многоугольник можно разбить на 100 прямоугольников, но нельзя – на 99. Докажите, что его нельзя разбить на 100 треугольников.

Прислать комментарий     Решение

Задача 111344

Темы:   [ Раскраски ]
[ Деление с остатком ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
[ Обыкновенные дроби ]
Сложность: 5-
Классы: 9,10,11

Натуральные числа покрашены в N цветов. Чисел каждого цвета бесконечно много. Известно, что цвет полусуммы двух различных чисел одной чётности зависит только от цветов слагаемых.
  а) Докажите, что полусумма чисел одной чётности одного цвета всегда окрашена в тот же цвет.
  б) При каких N такая раскраска возможна?

Прислать комментарий     Решение

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 319]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .