Страница:
<< 57 58 59 60
61 62 63 >> [Всего задач: 316]
Многоугольник можно разбить на 100 прямоугольников, но нельзя – на 99. Докажите, что его нельзя разбить на 100 треугольников.
|
|
Сложность: 5- Классы: 9,10,11
|
Натуральные числа покрашены в N цветов. Чисел каждого цвета бесконечно много. Известно, что цвет полусуммы двух различных чисел одной чётности зависит только от цветов слагаемых.
а) Докажите, что полусумма чисел одной чётности одного цвета всегда
окрашена в тот же цвет.
б) При каких N такая раскраска возможна?
|
|
Сложность: 5- Классы: 10,11
|
Многочлен P(x) с действительными коэффициентами таков, что уравнение P(m) + P(n) = 0 имеет бесконечно много решений в целых числах m и n.
Докажите, что у графика y = P(x) есть центр симметрии.
|
|
Сложность: 5- Классы: 9,10,11
|
Дано целое число n > 1. Двое игроков по очереди отмечают точки на окружности: первый – красным цветом, второй – синим (отмечать одну и ту же точку дважды нельзя). Когда отмечено по n точек каждого цвета, игра заканчивается. После этого каждый игрок находит на окружности дугу наибольшей длины с концами своего цвета, на которой больше нет отмеченных точек. Игрок, у которого найденная длина больше, выиграл (в случае равенства длин дуг, а также при отсутствии таких дуг у обоих игроков – ничья). Кто из играющих может всегда выигрывать, как бы ни играл противник?
Две команды шахматистов одинаковой численности сыграли матч: каждый сыграл по одному разу с каждым из другой команды. В каждой партии давали 1 очко за победу, ½ – за ничью и 0 – за поражение. В итоге команды набрали поровну очков. Докажите, что какие-то два участника матча тоже набрали поровну очков, если в обеих командах было:
а) по 5 шахматистов;
б) произвольное равное число шахматистов.
Страница:
<< 57 58 59 60
61 62 63 >> [Всего задач: 316]