Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 316]
|
|
Сложность: 3+ Классы: 8,9,10
|
Натуральное число увеличили на 10% и снова получили натуральное число. Могла ли при этом сумма цифр уменьшиться ровно на 10%?
На клетчатой доске 5×5 Петя отмечает несколько клеток. Вася выиграет, если сможет накрыть все эти клетки неперекрывающимися и не вылезающими за границу квадрата уголками из трёх клеток (уголки разрешается класть только "по клеточкам"). Какое наименьшее число клеток должен отметить Петя, чтобы Вася не смог выиграть?
|
|
Сложность: 3+ Классы: 6,7,8
|
К кабинке канатной дороги, ведущей на гору, подошли четыре человека, которые весят 50, 60, 70 и 90 кг. Смотрителя нет, а в автоматическом режиме кабинка ездит туда-сюда только с грузом от 100 до 250 кг (в частности, пустой она не ездит), при условии, что пассажиров можно рассадить на две скамьи так, чтобы веса на скамьях отличались не более, чем на 25 кг. Каким образом все они смогут подняться на гору?
|
|
Сложность: 3+ Классы: 8,9,10
|
Дан треугольник с углами 30°, 70° и 80°. Разрежьте его отрезком на два треугольника так, чтобы биссектриса одного из этих треугольников и медиана второго, проведённые из концов разрезающего отрезка, были параллельны друг другу.
|
|
Сложность: 3+ Классы: 5,6,7
|
а) Впишите в каждый кружочек по цифре, отличной от нуля, так, чтобы
сумма цифр в двух верхних кружочках была в 7 раз меньше суммы остальных цифр, а сумма цифр в двух левых кружочках – в 5 раз меньше суммы остальных цифр.
б) Докажите, что задача имеет единственное решение.
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 316]