ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шарыгин И.Ф.

Игорь Фёдорович Шарыгин (1937-2004) - математик и педагог, специалист по элементарной геометрии, популяризатор науки, автор учебников и пособий для школьников. Профессор МГУ, член редколлегии журнала "Квант". Член исполкома Международной комиссии по математическому образованию(1999-2002), заведующий лабораторией "Геометрия" МЦНМО.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44]      



Задача 108679

Темы:   [ Вспомогательная окружность ]
[ Симметрия помогает решить задачу ]
[ Вписанный угол равен половине центрального ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Правильный (равносторонний) треугольник ]
[ Четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9

Дан выпуклый четырёхугольник ABMC , в котором AB=BC , BAM = 30o , ACM= 150o . Докажите, что AM – биссектриса угла BMC .
Прислать комментарий     Решение


Задача 55393

Темы:   [ Угол между касательной и хордой ]
[ Признаки и свойства параллелограмма ]
Сложность: 4+
Классы: 8,9

Окружность S1 касается сторон угла ABC в точках A и C. Окружность S2 касается прямой AC в точке C и проходит через точку B. Окружность S1 она пересекает в точке M. Докажите, что прямая AM делит отрезок BC пополам.

Прислать комментарий     Решение


Задача 108043

Темы:   [ Вспомогательные подобные треугольники ]
[ Трапеции (прочее) ]
[ Выход в пространство ]
Сложность: 4+
Классы: 8,9

В трапеции ABCD  AB – основание,  AC = BCH – середина AB. Пусть l – прямая, проходящая через точку H и пересекающая прямые AD и BD в точках P и Q соответственно. Докажите, что либо углы ACP и QCB равны, либо их сумма равна 180°.

Прислать комментарий     Решение

Задача 55248

Темы:   [ Неравенства с площадями ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 4+
Классы: 8,9

На диаметре AC некоторой окружности дана точка E. Проведите через неё хорду BD так, чтобы площадь четырёхугольника ABCD была наибольшей.

Прислать комментарий     Решение


Задача 108133

Темы:   [ Касающиеся окружности ]
[ Ортогональная (прямоугольная) проекция ]
[ Пересекающиеся окружности ]
[ Диаметр, основные свойства ]
[ Вписанный угол, опирающийся на диаметр ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Общие четырехугольники ]
Сложность: 5-
Классы: 8,9

ABCD – выпуклый четырёхугольник. Окружности, построенные на отрезках AB и CD как на диаметрах, касаются внешним образом в точке M , отличной от точки пересечения диагоналей четырёхугольника. Окружность, проходящая через точки A , M и C , вторично пересекает прямую, соединяющую точку M и середину AB в точке K , а окружность, проходящая через точки B , M и D , вторично пересекает ту же прямую в точке L . Докажите, что |MK-ML| = |AB-CD| .
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .