Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 204]
|
|
Сложность: 4- Классы: 9,10,11
|
Дана окружность с центром в начале координат.
Докажите, что найдётся окружность меньшего радиуса, на которой лежит не меньше точек с целыми координатами.
|
|
Сложность: 4- Классы: 10,11
|
Графики двух квадратных трёхчленов пересекаются в двух точках. В обеих точках касательные к графикам перпендикулярны.
Верно ли, что оси симметрии графиков совпадают?
|
|
Сложность: 4- Классы: 9,10
|
В остроугольном треугольнике ABC AA', BB' и CC' – высоты. Точки Ca, Cb симметричны C' относительно AA' и BB'. Аналогично определены точки Ab, Ac, Bc, Ba. Докажите, что прямые AbBa, BcCb и CaAc параллельны.
Диагонали четырёхугольника ABCD равны и пересекаются в точке O. Серединные перпендикуляры к сторонам AB и CD пересекаются в точке P, а серединные перпендикуляры к сторонам BC и AD – в точке Q. Найдите угол POQ.
|
|
Сложность: 4- Классы: 8,9,10
|
Из высот остроугольного треугольника можно составить треугольник. Докажите, что из его биссектрис тоже можно составить треугольник.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 204]