ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Заславский А.А.

Алексей Александрович Заславский (род.1960 г.) - к.т.н. (1990), старший научный сотрудник ЦЭМИ РАН, председатель жюри олимпиады им. Шарыгина, редактор Journal of Classical Geometry, член редколлегии "Кванта".

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 196]      



Задача 67223

Темы:   [ Четырехугольники (построения) ]
[ Описанные четырехугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Гомотетия помогает решить задачу ]
Сложность: 4+
Классы: 8,9,10,11

Восстановите вписанно-описанный четырёхугольник $ABCD$ по серединам дуг $AB$, $BC$, $CD$ его описанной окружности.
Прислать комментарий     Решение


Задача 110754

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Параллельный перенос. Построения и геометрические места точек ]
[ Центральная симметрия помогает решить задачу ]
[ Пересекающиеся окружности ]
[ Вписанные и описанные окружности ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4+
Классы: 9,10

Даны две окружности, пересекающиеся в точках P и Q . C – произвольная точка одной из окружностей, отличная от P и Q ; A , B – вторые точки пересечения прямых CP , CQ с другой окружностью. Найдите геометрическое место центров окружностей, описанных около треугольников ABC .
Прислать комментарий     Решение


Задача 110769

Темы:   [ Индукция в геометрии ]
[ Наглядная геометрия в пространстве ]
[ Разные задачи на разрезания ]
[ Куб ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4+
Классы: 9,10,11

Куб с ребром 2n+1 разрезают на кубики с ребром 1 и бруски размера 2x 2x 1 . Какое наименьшее количество единичных кубиков может при этом получиться?
Прислать комментарий     Решение


Задача 116201

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Частные случаи треугольников (прочее) ]
Сложность: 4+
Классы: 8,9

B остроугольном треугольнике ровно один из углов равен 60°. Докажите, что прямая, проходящая через центр описанной окружности и точку пересечения медиан треугольника, отсекает от него равносторонний треугольник.

Прислать комментарий     Решение

Задача 108095

Темы:   [ Векторы помогают решить задачу ]
[ Скалярное произведение. Соотношения ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Поворот на $90^\circ$ ]
Сложность: 5-
Классы: 8,9

Пусть M – точка пересечения медиан треугольника ABC . На перпендикулярах, опущенных из M на стороны BC , AC и AB , взяты точки A1 , B1 и C1 соответственно, причём A1B1 MC и A1C1 MB . Докажите, что точка M является точкой пересечения медиан и в треугольнике A1B1C1 .
Прислать комментарий     Решение


Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 196]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .