ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Григорий Александрович Гальперин - российский и американский математик, автор популярных книг "Московские математические олимпиады" и "Математические бильярды". |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи За круглым столом сидят 30 человек – рыцари и лжецы (рыцари всегда говорят правду, а лжецы всегда лгут). Известно, что у каждого из них за этим же столом есть ровно один друг, причём у рыцаря этот друг – лжец, а у лжеца этот друг – рыцарь (дружба всегда взаимна). На вопрос "Сидит ли рядом с вами ваш друг?" сидевшие через одного ответили "Да". Сколько из остальных могли также ответить "Да"? Даны различные натуральные числа a1, a2, ..., a14. На доску выписаны все 196 чисел вида ak + al, где 1 ≤ k, l ≤ 14. Может ли оказаться, что для каждой комбинации из двух цифр среди написанных на доске чисел найдётся хотя бы одно число, оканчивающееся на эту комбинацию (то есть найдутся числа, оканчивающиеся на 00, 01, 02, ..., 99)? Рассматриваются девятизначные числа, состоящие из неповторяющихся цифр от
1 до 9 в разном порядке. Пара таких чисел называется кондиционной, если их
сумма равна 987654321. Дано:
На диаметре AC некоторой окружности дана точка E. Проведите через неё хорду BD так, чтобы площадь четырёхугольника ABCD была наибольшей.
Числа 21989 и 51989 выписали одно за другим (в десятичной записи). Сколько всего цифр выписано? |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 82]
Рассматриваются девятизначные числа, состоящие из неповторяющихся цифр от
1 до 9 в разном порядке. Пара таких чисел называется кондиционной, если их
сумма равна 987654321.
Числа 21989 и 51989 выписали одно за другим (в десятичной записи). Сколько всего цифр выписано?
Дано:
Шесть игральных костей нанизали на спицу так, что каждая может вращаться независимо от остальных (протыкаем через центры противоположных граней). Спицу положили на стол и прочитали число, образованное цифрами на верхних гранях костей. Докажите, что можно так повернуть кости, чтобы это число делилось на 7. (На гранях стоят цифры от 1 до 6, сумма цифр на противоположных гранях равна 7.)
Десятичная запись натурального числа a состоит из n цифр, а десятичная запись числа a³ состоит из m цифр. Может ли m + n равняться 2001?
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 82]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке