Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 82]
|
|
Сложность: 3 Классы: 7,8,9,10
|
а) Для каждого трёхзначного числа берём произведение его цифр, а затем эти
произведения, вычисленные для всех трёхзначных чисел, складываем. Сколько получится?
б) Тот же вопрос для четырёхзначных чисел.
Вокруг правильного семиугольника описали окружность и вписали в него окружность. То же проделали с правильным 17-угольником. В результате каждый из
многоугольников оказался расположенным в своем круговом кольце. Оказалось, что
площади этих колец одинаковы. Докажите, что стороны многоугольников одинаковы.
|
|
Сложность: 3 Классы: 10,11
|
На бумажке записаны три положительных числа x, y и 1. За один ход разрешается записать на бумажку сумму или разность каких-нибудь двух уже записанных чисел или записать число, обратное к какому-нибудь из уже записанных чисел. Можно ли за несколько ходов получить на бумажке
a) число x²? б) число xy?
В каждой клетке секретной таблицы n×n записана одна из цифр от 1 до 9. Из них получаются n-значные числа, записанные в строках слева направо и в столбцах сверху вниз. Петя хочет написать такое n-значное число без нулей в записи, чтобы ни это число, ни оно же,
записанное задом наперед, не совпадало ни с одним из 2n чисел в строках
и столбцах таблицы. В каком наименьшем количестве клеток Петя должен для этого узнать цифры?
|
|
Сложность: 3 Классы: 8,9,10
|
Известно, что 0 < a, b, c, d < 1 и abcd = (1 – a)(1 – b)(1 – c)(1 – d). Докажите, что (a + b + c + d) – (a + c)(b + d) ≥ 1.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 82]