ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Григорий Александрович Гальперин - российский и американский математик, автор популярных книг "Московские математические олимпиады" и "Математические бильярды". |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть K, L, M и N — середины сторон AB, BC, CD
и DA выпуклого четырехугольника ABCD.
|
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 82]
Рассматриваются девятизначные числа, состоящие из неповторяющихся цифр от
1 до 9 в разном порядке. Пара таких чисел называется кондиционной, если их
сумма равна 987654321.
Числа 21989 и 51989 выписали одно за другим (в десятичной записи). Сколько всего цифр выписано?
Дано:
Шесть игральных костей нанизали на спицу так, что каждая может вращаться независимо от остальных (протыкаем через центры противоположных граней). Спицу положили на стол и прочитали число, образованное цифрами на верхних гранях костей. Докажите, что можно так повернуть кости, чтобы это число делилось на 7. (На гранях стоят цифры от 1 до 6, сумма цифр на противоположных гранях равна 7.)
Десятичная запись натурального числа a состоит из n цифр, а десятичная запись числа a³ состоит из m цифр. Может ли m + n равняться 2001?
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 82]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке