ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Гальперин Г.А.

Григорий Александрович Гальперин - российский и американский математик, автор популярных книг "Московские математические олимпиады" и "Математические бильярды".

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 82]      



Задача 103857

Тема:   [ Принцип крайнего ]
Сложность: 4
Классы: 6,7,8

В вершинах куба ABCDEFGH расставлены натуральные числа так, что числа в соседних (по ребру) вершинах отличаются не более чем на единицу. Докажите, что обязательно найдутся две диаметрально противоположные вершины, числа в которых отличаются не более чем на единицу.

(Пары диаметрально противоположных вершин куба: A и G, B и H, C и E, D и F.)

Прислать комментарий     Решение


Задача 105106

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9,10

Натуральное число N в 999...99 (k девяток) раз больше суммы своиx цифр. Укажите все возможные значения k и для каждого из них приведите пример такого числа.
Прислать комментарий     Решение


Задача 105131

Темы:   [ Разные задачи на разрезания ]
[ Подсчет двумя способами ]
[ Выпуклые многоугольники ]
[ Индукция в геометрии ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 4
Классы: 8,9,10

Остроугольный треугольник разрезали прямолинейным разрезом на две (не обязательно треугольные) части, затем одну из этих частей – опять на две части, и так далее: на каждом шаге выбирали любую из уже имеющихся частей и разрезали её (по прямой) на две. Через несколько шагов оказалось, что исходный треугольник распался на несколько треугольников. Могут ли все они быть тупоугольными?

Прислать комментарий     Решение

Задача 108077

Темы:   [ Углы между биссектрисами ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Частные случаи треугольников (прочее) ]
Сложность: 4
Классы: 8,9

Точка P лежит внутри равнобедренного треугольника ABC  (AB = BC ),  причём  ∠ABC = 80°,  ∠PAC = 40°,  ∠ACP = 30°.  Найдите угол BPC.

Прислать комментарий     Решение

Задача 115390

Темы:   [ Свойства гомотетии и центра гомотетии ]
[ Неравенства с объемами ]
[ Площадь сферы и ее частей ]
[ Объем шара, сегмента и проч. ]
Сложность: 4
Классы: 10,11

На левую чашу весов положили две круглых монеты, а на правую — ещё одну, так что весы оказались в равновесии. А какая из чаш перевесит, если каждую из монет заменить шаром того же радиуса? (Все шары и монеты изготовлены целиком из одного и того же материала, все монеты имеют одинаковую толщину.)
Прислать комментарий     Решение


Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 82]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .