ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Григорий Александрович Гальперин - российский и американский математик, автор популярных книг "Московские математические олимпиады" и "Математические бильярды". |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 82]
Существует ли выпуклый многогранник, одно из сечений которого – треугольник (сечение не проходит через вершины), и в каждой вершине сходятся
Положительные числа a, b и c таковы, что abc = 1. Докажите неравенство
Через две вершины треугольника проведены прямые, разбивающие его на три треугольника и четырёхугольник. а) Могут ли площади всех четырёх частей быть равны? б) Какие три из этих частей могут иметь равные площади? Во сколько раз отличается от них площадь четвёртой части?
В неравнобедренном треугольнике ABC проведены медианы AK и BL . Углы BAK и CBL равны 30o . Найдите углы треугольника ABC .
Даны две картофелины произвольной формы и размера. Докажите, что по поверхности каждой из них можно проложить по проволочке так, что получатся два изогнутых колечка (не обязательно плоских), одинаковых по форме и размеру.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 82]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке