|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Николай Борисович Васильев(1940-1998) - математик, многолетний руководитель "Задачника Кванта", ведущий методист Всесоюзной заочной математической школы, в 1958-1979 - активнейший член жюри Московской, Всероссийской и Всесоюзной олимпиад, один из организаторов Турнира городов, автор книг "Задачи всесоюзных математических олимпиад", "Заочные математические олимпиады", "Прямые и кривые", "Математические соревнования. Геометрия". |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На плоскости даны две перпендикулярные прямые. С помощью кронциркуля укажите на плоскости три точки, являющиеся вершинами равностороннего треугольника. Кронциркуль — это инструмент, похожий на циркуль, но на концах у него две иголки. Он позволяет переносить одинаковые расстояния, но не позволяет рисовать (процарапывать) окружности, дуги окружностей и делать засечки. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]
В каждой клетке квадрата 8×8 клеток проведена одна из диагоналей. Рассмотрим объединение этих 64 диагоналей. Оно состоит из нескольких связных частей (к одной части относятся точки, между которыми можно пройти по одной или нескольким диагоналям). Может ли количество этих частей быть больше
Пусть k и n – натуральные числа, k ≤ n. Расставьте первые n² натуральных чисел в таблицу n×n так, чтобы в каждой строке числа шли в порядке возрастания и при этом сумма чисел в k-м столбце была а) наименьшей; б) наибольшей.
Выпуклой фигурой F нельзя накрыть полукруг радиуса R. Может ли случиться, что двумя фигурами, равными F, можно накрыть круг радиуса R?
Тремя бесконечными сериями равноотстоящих параллельных прямых плоскость
разбита на равносторонние треугольники со стороной 1.
Существует ли бесконечное число таких троек целых чисел x, y, z, что x² + y² + z² = x³ + y³ + z³?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|