Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Васильев Н.Б.

Николай Борисович Васильев(1940-1998) - математик, многолетний руководитель "Задачника Кванта", ведущий методист Всесоюзной заочной математической школы, в 1958-1979 - активнейший член жюри Московской, Всероссийской и Всесоюзной олимпиад, один из организаторов Турнира городов, автор книг "Задачи всесоюзных математических олимпиад", "Заочные математические олимпиады", "Прямые и кривые", "Математические соревнования. Геометрия".

Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Четыре круга, центры которых являются вершинами выпуклого четырёхугольника, целиком покрывают этот четырёхугольник. Докажите, что из них можно выбрать три круга, которые покрывают треугольник с вершинами в центрах этих кругов.

Вниз   Решение


На прямой сидят 2019 точечных кузнечиков. За ход какой-нибудь из кузнечиков прыгает через какого-нибудь другого так, чтобы оказаться на прежнем расстоянии от него. Прыгая только вправо, кузнечики могут добиться того, чтобы какие-то двое из них оказались на расстоянии ровно 1 мм друг от друга. Докажите, что кузнечики могут добиться того же, прыгая из начального положения только влево.

ВверхВниз   Решение


Докажите, что площадь выпуклого четырёхугольника равна половине произведения его диагоналей на синус угла между ними.

ВверхВниз   Решение


а) Докажите для всех n > 2 неравенство    

б) Найдите какие-нибудь такие натуральные числа a, b, c, что для всех  n > 2  

Вверх   Решение

Все задачи автора

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]      



Задача 98328

Темы:   [ Произведения и факториалы ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 8,9,10

а) Докажите для всех n > 2 неравенство    

б) Найдите какие-нибудь такие натуральные числа a, b, c, что для всех  n > 2  

Прислать комментарий     Решение

Задача 107768

Темы:   [ Возрастание и убывание. Исследование функций ]
[ Производная и экстремумы ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 4
Классы: 10,11

В круглый бокал, осевое сечение которого — график функции y = x4, опускают вишенку — шар радиуса r. При каком наибольшем r шар коснется нижней точки дна? (Другими словами, каков максимальный радиус r круга, лежащего в области y$ \ge$x4 и содержащего начало координат?)
Прислать комментарий     Решение


Задача 73754

Темы:   [ Параллелепипеды (прочее) ]
[ Остовы многогранных фигур ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Cерединный перпендикуляр и ГМТ ]
[ Сочетания и размещения ]
Сложность: 4+
Классы: 10,11

В пространстве заданы четыре точки, не лежащие в одной плоскости.
Сколько существует различных параллелепипедов, для которых эти точки служат вершинами?

Прислать комментарий     Решение

Задача 98142

Темы:   [ Делимость чисел. Общие свойства ]
[ Раскладки и разбиения ]
[ Разбиения на пары и группы; биекции ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 8,9,10

Пусть n и b – натуральные числа. Через  V(n, b)  обозначим число разложений n на сомножители, каждый из которых больше b (например:
36 = 6·6 = 4·9 = 3·3·4 = 3·12,  так что  V(36, 2) = 5).  Докажите, что  V(n, b) < n/b.

Прислать комментарий     Решение

Задача 73554

Темы:   [ Процессы и операции ]
[ Индукция (прочее) ]
[ Двоичная система счисления ]
Сложность: 5-
Классы: 7,8,9

В бесконечной цепочке нервных клеток каждая может находиться в одном из двух состояний: «покой» и «возбуждение». Если в данный момент клетка возбудилась, то она посылает сигнал, который через единицу времени (скажем, через одну миллисекунду) доходит до обеих соседних с ней клеток. Каждая клетка возбуждается в том и только в том случае, если к ней приходит сигнал от одной из соседних клеток; если сигналы приходят одновременно с двух сторон, то они погашаются, и клетка не возбуждается. Например, если в начальной момент времени t = 0 возбудить три соседние клетки, а остальные оставить в покое, то возбуждение будет распространяться так, как показано на рисунке.

Пусть в начальный момент времени возбуждена только одна клетка. Сколько клеток будет находится в возбужденном состоянии через 15 мсек? через 65 мсек? через 1000 мсек? вообще через t мсек?

Что будет в том случае, если цепочка не бесконечная, а состоит из N клеток, соединённых в окружность,— будет ли возбуждение поддерживаться бесконечно долго или затухнет?
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .