Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Блинков А.Д.

Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

На стороне AC треугольника ABC взята точка A1, а на продолжении стороны BC за точку C взята точка C1, длина отрезка A1C равна 85% длины стороны AC, а длина отрезка BC1 равна 120% длины стороны BC. Сколько процентов площади треугольника ABC составляет площадь треугольника A1BC1?

Вниз   Решение


Около сферы описан пространственный четырёхугольник. Доказать, что точки касания лежат в одной плоскости.

ВверхВниз   Решение


Найти натуральное наименьшее целое число n такое, что n делится на 19, а n+2 делится на 82.

ВверхВниз   Решение


Найти такое трёхзначное число, удвоив которое, мы получим число, выражающее количество цифр, необходимое для написания всех последовательных целых чисел от единицы до этого искомого трёхзначного числа (включительно).

ВверхВниз   Решение


В треугольнике ABC угол C – прямой. Из центра C радиусом AC описана дуга, пересекающая гипотенузу в точке D, а катет CB – в точке E.
Найдите угловые величины дуг AD и DE, если  ∠B = 40°.

ВверхВниз   Решение


В футбольном чемпионате участвовали 16 команд. Каждая команда сыграла с каждой из остальных по одному разу, за победу давалось 3 очка, за ничью – 1 очко, за поражение – 0. Назовём команду успешной, если она набрала хотя бы половину от наибольшего возможного количества очков. Какое наибольшее количество успешных команд могло быть в турнире?

ВверхВниз   Решение


У квадратного уравнения  x² + px + q = 0  коэффициенты p и q увеличили на единицу. Эту операцию повторили четыре раза. Приведите пример такого исходного уравнения, что у каждого из пяти полученных уравнений корни были бы целыми числами.

Вверх   Решение

Все задачи автора

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 49]      



Задача 65842

Темы:   [ Счетные и несчетные подмножества ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Найдутся ли такие функции p(x) и q(x), что p(x) – чётная функция, а p(q(x)) – нечётная функция (отличная от тождественно нулевой)?

Прислать комментарий     Решение

Задача 66272

Темы:   [ Прямая призма ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Существует ли выпуклый многогранник, у которого рёбер столько же, сколько диагоналей? (Диагональю многогранника называется отрезок, соединяющий две вершины, не лежащие в одной грани.)

Прислать комментарий     Решение

Задача 86106

Тема:   [ Квадратные уравнения. Теорема Виета ]
Сложность: 3+
Классы: 8,9,10

Дискриминанты трёх приведённых квадратных трёхчленов равны 1, 4 и 9.
Докажите, что можно выбрать по одному корню каждого из них так, чтобы их сумма равнялась сумме оставшихся корней.

Прислать комментарий     Решение

Задача 105169

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Целочисленные и целозначные многочлены ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

У квадратного уравнения  x² + px + q = 0  коэффициенты p и q увеличили на единицу. Эту операцию повторили четыре раза. Приведите пример такого исходного уравнения, что у каждого из пяти полученных уравнений корни были бы целыми числами.

Прислать комментарий     Решение

Задача 105182

Темы:   [ Тетраэдр (прочее) ]
[ Медиана, проведенная к гипотенузе ]
[ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 10,11

Существует ли тетраэдр, все грани которого — равные прямоугольные треугольники?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .