Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Блинков А.Д.

Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Даны числа а1, ..., аn.
Для 1 ≤ in положим

di = MAX { aj | 1 ≤ ji } - MIN { aj | ijn }
d = MAX { di | 1 ≤ in }

а) Доказать, что для любых x1x2 ≤ ... ≤ xn выполняется неравенство

MAX { |xi - ai| | 1 ≤ in } ≥ d/2.


б) Доказать, что равенство в (*) выполняется для некоторых {xi} i=1...n

Вниз   Решение


Через точку внутри вписанного четырёхугольника провели две прямые, делящие его на четыре части. Три из этих частей – вписанные четырёхугольники, причем радиусы описанных вокруг них окружностей равны. Докажите, что четвёртая часть – четырёхугольник, вписанный в окружность того же радиуса.

ВверхВниз   Решение


Автор: Фольклор

Рассматриваются все треугольники АВС, у которых положение вершин В и С зафиксировано, а вершина А перемещается в плоскости треугольника так, что медиана СМ имеет одну и ту же длину. По какой траектории движется точка А?

ВверхВниз   Решение


Доказать, что число  n5 – 5n³ + 4n  делится на 120 при любом натуральном n.

ВверхВниз   Решение


На складе лежало несколько целых головок сыра. Ночью пришли крысы и съели 10 головок, причём все ели поровну. У нескольких крыс от обжорства заболели животы. Остальные семь крыс следующей ночью доели оставшийся сыр, но каждая крыса смогла съесть вдвое меньше сыра, чем накануне. Сколько сыра было на складе первоначально?

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 49]      



Задача 67137

Тема:   [ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 6,7,8,9

Произведение пяти различных целых чисел равно 2022. Чему может равняться их сумма? Если ответов несколько — укажите их все.
Прислать комментарий     Решение


Задача 108086

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

На гипотенузе AB прямоугольного треугольника ABC во внешнюю сторону построен квадрат ABDE. Известно, что  AC = 1,   BC = 3.
В каком отношении делит сторону DE биссектриса угла C?

Прислать комментарий     Решение

Задача 109495

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3
Классы: 8,9,10,11

На параболе  y = x²  выбраны четыре точки A, B, C, D так, что прямые AB и CD пересекаются на оси ординат.
Найдите абсциссу точки D, если абсциссы точек A, B и C равны a, b и c соответственно.

Прислать комментарий     Решение

Задача 111318

Тема:   [ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 6,7,8

На складе лежало несколько целых головок сыра. Ночью пришли крысы и съели 10 головок, причём все ели поровну. У нескольких крыс от обжорства заболели животы. Остальные семь крыс следующей ночью доели оставшийся сыр, но каждая крыса смогла съесть вдвое меньше сыра, чем накануне. Сколько сыра было на складе первоначально?

Прислать комментарий     Решение

Задача 111911

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 8,9,10

После урока на доске остался график функции  y = k/x  и пять прямых, параллельных прямой  y = kx  (k ≠ 0).
Найдите произведение абсцисс всех десяти точек пересечения.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .