ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Блинков А.Д.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]      



Задача 115768

Темы:   [ Признаки и свойства параллелограмма ]
[ Ромбы. Признаки и свойства ]
Сложность: 3+
Классы: 8,9,10,11

Существует ли такой параллелограмм, что все точки попарных пересечений биссектрис его углов лежат вне параллелограмма?

Прислать комментарий     Решение

Задача 115889

Темы:   [ Трапеции (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 3+
Классы: 8,9,10,11

В трапеции ABCD боковая сторона AB равна меньшему основанию BC, а диагональ AC равна основанию AD. Прямая, проходящая через вершину B параллельно AC, пересекает прямую DC в точке M. Докажите, что AM – биссектриса угла BAC.

Прислать комментарий     Решение

Задача 115890

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Неопределено ]
Сложность: 3+
Классы: 8,9,10,11

Через точку внутри вписанного четырёхугольника провели две прямые, делящие его на четыре части. Три из этих частей – вписанные четырёхугольники, причем радиусы описанных вокруг них окружностей равны. Докажите, что четвёртая часть – четырёхугольник, вписанный в окружность того же радиуса.

Прислать комментарий     Решение

Задача 115897

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Вписанные и описанные окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вневписанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Две пары подобных треугольников ]
Сложность: 3+
Классы: 8,9,10,11

Середина стороны треугольника и основание высоты, проведённой к этой стороне, симметричны относительно точки касания этой стороны с вписанной окружностью. Докажите, что эта сторона составляет треть периметра треугольника.

Прислать комментарий     Решение

Задача 115384

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Геометрия на клетчатой бумаге ]
Сложность: 4-
Классы: 7,8,9

Легко разместить комплект кораблей для игры в "Морской бой" на доске 10× 10 (см. рис.). А на какой наименьшей квадратной доске можно разместить этот комплект? (Напомним, что согласно правилам корабли не должны соприкасаться даже углами.)


Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .