Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Константинов Н.Н.

Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Пусть a1, a2, ..., a10 – натуральные числа,  a1 < a2 < ... < a10.  Пусть bk – наибольший делитель ak, меньший ak. Оказалось, что b1 > b2 > ... > b10.
Докажите, что  a10 > 500.

Вниз   Решение


Автор: Скробот Д.

Дан треугольник ABC. Окружность ω касается описанной окружности Ω треугольника ABC в точке A, пересекает сторону AB в точке K, а также пересекает сторону BC. Касательная CL к окружности ω такова, что отрезок KL пересекает сторону BC в точке T. Докажите, что отрезок BT равен по длине касательной, проведённой из точки B к ω.

ВверхВниз   Решение


Дано натуральное число  n > 1.  Для каждого делителя d числа  n + 1,  Петя разделил число n на d с остатком и записал на доску неполное частное, а в тетрадь – остаток. Докажите, что наборы чисел на доске и в тетради совпадают.

ВверхВниз   Решение


По двум пересекающимся дорогам с равными постоянными скоростями движутся автомобили "Ауди" и БМВ. Оказалось, что как в 17.00, так и в 18.00 БМВ находился в два раза дальше от перекрёстка, чем "Ауди". В какое время "Ауди" мог проехать перекрёсток?

ВверхВниз   Решение


Петя раскрашивает 2006 точек, расположенных на окружности, в 17 цветов. Затем Коля проводит хорды с концами в отмеченных точках так, чтобы концы любой хорды были одноцветны и хорды не имели общих точек (в том числе и общих концов). При этом Коля хочет провести как можно больше хорд, а Петя старается ему помешать. Какое наибольшее количество хорд заведомо сможет провести Коля?

ВверхВниз   Решение


Автор: Джукич Д.

Все стороны выпуклого пятиугольника равны, а все углы различны. Докажите, что максимальный и минимальный углы прилегают к одной стороне пятиугольника.

ВверхВниз   Решение


Дан остроугольный треугольник ABC. Точки B' и C' симметричны соответственно вершинам B и C относительно прямых AC и AB. Пусть P – точка пересечения описанных окружностей треугольников ABB' и ACC', отличная от A. Докажите, что центр описанной окружности треугольника ABC лежит на прямой PA.

ВверхВниз   Решение


В некотором городе разрешаются только парные обмены квартир (если две семьи обмениваются квартирами, то в тот же день они не имеют права участвовать в другом обмене). Докажите, что любой сложный обмен квартирами можно осуществить за два дня.
(Предполагается, что при любых обменах каждая семья как до, так и после обмена занимает одну квартиру, и что семьи при этом сохраняются).

ВверхВниз   Решение


Дана доска 15×15. Некоторые пары центров соседних по стороне клеток соединили отрезками так, что получилась замкнутая несамопересекающаяся ломаная, симметричная относительно одной из диагоналей доски. Докажите, что длина ломаной не больше 200.

ВверхВниз   Решение


Несколько человек в течение t минут наблюдали за улиткой. Каждый наблюдал за ней ровно 1 минуту и заметил, что за эту минуту улитка проползла ровно 1 метр. Ни в один момент времени улитка не оставалась без наблюдения. Какой наименьший и какой наибольший путь могла она проползти за эти t минут?

ВверхВниз   Решение


а) Докажите, что нельзя занумеровать рёбра куба числами 1, 2, ..., 11, 12 так, чтобы для каждой вершины сумма номеров трёх выходящих из неё рёбер была одной и той же.

б) Можно ли вычеркнуть одно из чисел 1, 2, ..., 12, 13 и оставшимися занумеровать рёбра куба так, чтобы выполнялось то же условие?

Вверх   Решение

Все задачи автора

Страница: 1 2 >> [Всего задач: 8]      



Задача 97795

Темы:   [ Средние величины ]
[ Задачи на движение ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 8,9

Пешеход шёл 3,5 часа, причём за каждый промежуток времени в один час он проходил ровно 5 км.
Следует ли из этого, что его средняя скорость за всё время равна 5 км/час?

Прислать комментарий     Решение

Задача 98534

Тема:   [ Взвешивания ]
Сложность: 3+
Классы: 8,9

В Колиной коллекции есть четыре царские золотые пятирублевые монеты. Коле сказали, что какие-то две из них фальшивые. Коля хочет проверить (доказать или опровергнуть), что среди монет есть ровно две фальшивые. Удастся ли ему это сделать с помощью двух взвешиваний на чашечных весах без гирь? (Фальшивые монеты одинаковы по весу, настоящие тоже одинаковы по весу, но фальшивые легче настоящих.)

Прислать комментарий     Решение

Задача 97936

 [Обмены квартир]
Темы:   [ Разложение в произведение транспозиций и циклов ]
[ Композиции симметрий ]
[ Группа перестановок ]
Сложность: 3+
Классы: 8,9,10

В некотором городе разрешаются только парные обмены квартир (если две семьи обмениваются квартирами, то в тот же день они не имеют права участвовать в другом обмене). Докажите, что любой сложный обмен квартирами можно осуществить за два дня.
(Предполагается, что при любых обменах каждая семья как до, так и после обмена занимает одну квартиру, и что семьи при этом сохраняются).

Прислать комментарий     Решение

Задача 73677

Темы:   [ Подсчет двумя способами ]
[ Степень вершины ]
[ Куб ]
[ Остовы многогранных фигур ]
Сложность: 4-
Классы: 8,9,10

а) Докажите, что нельзя занумеровать рёбра куба числами 1, 2, ..., 11, 12 так, чтобы для каждой вершины сумма номеров трёх выходящих из неё рёбер была одной и той же.

б) Можно ли вычеркнуть одно из чисел 1, 2, ..., 12, 13 и оставшимися занумеровать рёбра куба так, чтобы выполнялось то же условие?

Прислать комментарий     Решение

Задача 97895

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Целочисленные решетки (прочее) ]
[ Инварианты ]
Сложность: 4-
Классы: 7,8,9

Улицы города расположены в трёх направлениях, так что все кварталы – равные между собой равносторонние треугольники. Правила уличного движения таковы, что через перекресток можно проехать либо прямо, либо повернув влево или вправо на 120° в ближайшую улицу. Поворачивать разрешается только на перекрёстках. Две машины выехали друг за другом из одной точки в одном направлении и едут с одинаковой скоростью, придерживаясь этих правил. Может ли случиться, что через некоторое время они на какой-то улице (не на перекрёстке) встретятся?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .