Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 105]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В произведении трёх натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно на 2016?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В произведении пяти натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 15 раз?
|
|
Сложность: 3+ Классы: 9,10,11
|
Пусть P(x) – многочлен степени n ≥ 2 с неотрицательными коэффициентами, а a, b и c – длины сторон некоторого остроугольного треугольника.
Докажите, что числа также являются длинами сторон некоторого остроугольного треугольника.
|
|
Сложность: 3+ Классы: 9,10,11
|
Число x таково, что обе суммы S = sin 64x + sin 65x и C = cos 64x + cos 65x – рациональные числа.
Докажите, что в одной из этих сумм оба слагаемых рациональны.
Пусть ABCD – четырёхугольник с параллельными сторонами AD и BC; M и N – середины его сторон AB и CD
соответственно. Прямая MN делит пополам отрезок, соединяющий центры окружностей, описанных около треугольников ABC и ADC. Докажите, что ABCD – параллелограмм.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 105]