ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найти шесть различных натуральных чисел, произведение любых двух из которых делится на сумму этих двух чисел. Три прямолинейных коридора одинаковой длины l образуют фигуру, изображённую на рисунке. По ним бегают гангстер и полицейский. Максимальная скорость полицейского в 2 раза больше максимальной скорости гангстера. Полицейский сможет увидеть гангстера, если он окажется от него на расстоянии, не большем r. Доказать, что полицейский всегда может поймать гангстера, если: а) r > l/3; б) r > l/4; в) r > l/5; г) r > l/7. Докажите, что произведение 99 дробей Имеется n целых чисел (n > 1). Известно, что каждое из них отличается от произведения всех остальных на число, кратное n.
Дан центрально-симметричный октаэдр $ABCA'B'C'$ (пары $A$ и $A'$, $B$ и $B'$, $C$ и $C'$ противоположны), такой, что суммы плоских углов при каждой из вершин октаэдра равны $240^{\circ}$. В треугольниках $ABC$ и $A'BC$ отмечены точки Торричелли $T_1$ и $T_2$. Докажите, что расстояния от $T_1$ и $T_2$ до $BC$ равны. Дана замкнутая ломаная $A_1A_2\dots A_n$ и окружность $\omega$, которая касается каждой из прямых $A_1A_2, A_2A_3,\dots, A_nA_1$. Звено ломаной называется хорошим, если оно касается окружности, и плохим в противном случае (т.е. если продолжение этого звена касается окружности). Докажите, что плохих звеньев четное количество. |
Страница: 1 [Всего задач: 2]
Дана замкнутая ломаная $A_1A_2\dots A_n$ и окружность $\omega$, которая касается каждой из прямых $A_1A_2, A_2A_3,\dots, A_nA_1$. Звено ломаной называется хорошим, если оно касается окружности, и плохим в противном случае (т.е. если продолжение этого звена касается окружности). Докажите, что плохих звеньев четное количество.
Двое игроков по очереди выставляют на доску 65×65 по одной шашке. При этом ни в одной линии (горизонтали или вертикали) не должно быть больше двух шашек. Кто не может сделать ход – проиграл. Кто выигрывает при правильной игре?
Страница: 1 [Всего задач: 2]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке