ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все авторы
>>
Скопенков М.Б.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: 1 2 >> [Всего задач: 8]
Арифметическая прогрессия состоит из целых чисел, а её сумма – степень двойки.
а) Торт имеет форму треугольника, в котором один угол в 3 раза больше другого. Коробка для торта имеет форму того же треугольника, но симметрична ему относительно некоторой прямой. Как разрезать торт на две части, которые можно будет (не переворачивая) уложить в эту коробку? б) Та же задача для торта в форме тупоугольного треугольника, в котором тупой угол в 2 раза больше одного из острых углов.
а) Торт имеет форму тупоугольного треугольника, в котором тупой угол в 2 раза больше одного из острых углов. Коробка для торта имеет форму того же треугольника, но симметрична ему относительно некоторой прямой. Как разрезать торт на две части, которые можно будет (не переворачивая) уложить в эту коробку? б) Та же задача для торта, имеющего форму треугольника с углами 20°, 30°, 130°. (Торт и коробку считайте плоскими фигурами.)
Дан многоугольник, у которого каждые две соседние стороны перпендикулярны. Назовём две его вершины не дружными, если биссектрисы многоугольника, выходящие из этих вершин, перпендикулярны. Докажите, что для любой вершины количество не дружных с ней вершин чётно.
Целые ненулевые числа a1, a2, ..., an таковы, что равенство выполнено при всех целых значениях x, входящих в область определения дроби, стоящей в левой части.a) Докажите, что число n чётно. б) При каком наименьшем n такие числа существуют?
Страница: 1 2 >> [Всего задач: 8] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|