ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Митрофанов И.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



Задача 64856

Темы:   [ Шестиугольники ]
[ Векторы помогают решить задачу ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 9,10,11

На столе лежал проволочный треугольник с углами x°, y°, z°. Хулиган Коля согнул каждую сторону треугольника на один градус, в результате чего получился невыпуклый шестиугольник c внутренними углами  (x – 1)°,  181°,  (y – 1)°,  181°, (z – 1)°,  181°.  Докажите, что точки сгиба делили стороны исходного треугольника в одном и том же отношении.

Прислать комментарий     Решение

Задача 65747

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Две касательные, проведенные из одной точки ]
[ Вписанный угол равен половине центрального ]
Сложность: 4
Классы: 8,9,10

Окружность ω вписана в треугольник ABC, в котором  AB < AC.  Вневписанная окружность этого треугольника касается стороны BC в точке A'. Точка X выбирается на отрезке A'A так, что отрезок A'X не пересекает ω. Касательные, проведённые из X к ω, пересекают отрезок BC в точках Y и Z. Докажите, что сумма  XY + XZ  не зависит от выбора точки X.

Прислать комментарий     Решение

Задача 66589

Тема:   [ Теория игр (прочее) ]
Сложность: 4
Классы: 9,10,11

В ряд лежат $100N$ бутербродов, каждый с колбасой и сыром. Дядя Федор и кот Матроскин играют в игру. Дядя Федор за одно действие съедает один бутерброд с одного из краев. Кот Матроскин за одно действие может стянуть колбасу с одного бутерброда (а может ничего не делать). Дядя Федор каждый ход делает по $100$ действий подряд, а кот Матроскин делает только $1$ действие; дядя Федор ходит первым, кот Матроскин вторым, далее ходы чередуются до тех пор, пока дядя Федор не доест все бутерброды. Дядя Федор выигрывает, если последний съеденный им бутерброд был с колбасой. Верно ли, что при каждом натуральном $N$ он сможет выиграть независимо от ходов кота Матроскина?
Прислать комментарий     Решение


Задача 116419

Темы:   [ Разбиения на пары и группы; биекции ]
[ Процессы и операции ]
[ Арифметическая прогрессия ]
Сложность: 4
Классы: 10,11

На съезд собрались 5000 кинолюбителей, каждый видел хотя бы один фильм. Их делят на секции двух типов: либо обсуждение фильма, который все члены секции видели, либо каждый рассказывает о виденном фильме, который больше никто в секции не видел. Докажите, что всех можно разбить ровно на 100 секций. (Секции из одного человека разрешаются: он пишет отзыв о виденном фильме.)

Прислать комментарий     Решение

Задача 65168

Темы:   [ Математическая логика (прочее) ]
[ Теория алгоритмов (прочее) ]
Сложность: 4+
Классы: 8,9,10,11

Император пригласил на праздник 2015 волшебников, добрых и злых, при этом волшебники знают, кто добрый и кто злой, а император – нет. Добрый волшебник всегда говорит правду, а злой говорит что угодно. На празднике император сначала выдаёт каждому волшебнику по бумажке с вопросом (требующим ответа "да" или "нет"), затем волшебники отвечают, и после всех ответов император одного изгоняет. Волшебник выходит в заколдованную дверь, и император узнаёт, добрый он был или злой. После этого император вновь выдаёт каждому из оставшихся волшебников по бумажке с вопросом, вновь одного изгоняет, и так далее, пока император не решит остановиться (это возможно после любого из ответов, и после остановки можно никого не изгонять). Докажите, что император может изгнать всех злых волшебников, удалив при этом не более одного доброго.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .