Страница:
<< 1 2 [Всего задач: 8]
|
|
Сложность: 4- Классы: 9,10,11
|
На окружности расставлено несколько положительных чисел, каждое из которых не больше 1. Докажите, что можно разделить окружность на три дуги так, что суммы чисел на соседних дугах будут отличаться не больше чем на 1. (Если на дуге нет чисел, то сумма на ней считается равной нулю.)
|
|
Сложность: 4 Классы: 8,9,10
|
Число
представили в виде несократимой дроби.
Докажите, что если 3n + 1 – простое число, то числитель получившейся дроби делится на 3n + 1.
|
|
Сложность: 5- Классы: 10,11
|
k ≥ 6 – натуральное число. Докажите, что если некоторый многочлен с целыми коэффициентами принимает в k целых точках значения среди чисел от 1 до k – 1, то эти значения равны.
Страница:
<< 1 2 [Всего задач: 8]