Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Калинин А.

Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Назовём натуральное число хорошим, если среди его делителей есть ровно два простых числа.
Могут ли 18 подряд идущих натуральных чисел быть хорошими?

   Решение

Все задачи автора

Страница: 1 2 >> [Всего задач: 6]      



Задача 65567

Темы:   [ Задачи на движение ]
[ Графики и ГМТ на координатной плоскости ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Автор: Калинин А.

Одновременно из деревень A и Б навстречу друг другу вышли Аня и Боря (их скорости постоянны, но не обязательно одинаковы). Если бы Аня вышла на 30 минут раньше, то они встретились бы на 2 км ближе к деревне Б. Если бы Боря вышел на 30 минут раньше, то встреча состоялась бы ближе к деревне A. На сколько?

Прислать комментарий     Решение

Задача 109566

Темы:   [ Касающиеся окружности ]
[ Две касательные, проведенные из одной точки ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Автор: Калинин А.

Окружности S1 и S2 касаются внешним образом в точке F . Прямая l касается S1 и S2 в точках A и B соответственно. Прямая, параллельная прямой l , касается S2 в точке C и пересекает S1 в двух точках. Докажите, что точки A , F и C лежат на одной прямой.
Прислать комментарий     Решение


Задача 98499

Темы:   [ Взвешивания ]
[ Двоичная система счисления ]
[ Деление с остатком ]
Сложность: 4-
Классы: 8,9

Автор: Калинин А.

На правой чаше чашечных весов лежит груз массой 11111 г. Весовщик последовательно раскладывает по чашам гири, первая из которых имеет массу 1 г, а каждая последующая вдвое тяжелее предыдущей. В какой-то момент весы оказались в равновесии. На какую чашу поставлена гиря 16 г?

Прислать комментарий     Решение

Задача 109547

Темы:   [ Уравнения в целых числах ]
[ Деление с остатком ]
[ Арифметика остатков (прочее) ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 8,9,10

Автор: Калинин А.

Докажите, что уравнение  x³ + y³ = 4(x²y + xy² + 1)  не имеет решений в целых числах.

Прислать комментарий     Решение

Задача 109553

Темы:   [ Касающиеся окружности ]
[ Две касательные, проведенные из одной точки ]
[ Три точки, лежащие на одной прямой ]
[ Вспомогательные подобные треугольники ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9,10,11

Автор: Калинин А.

Две окружности S1 и S2 касаются внешним образом в точке F. Их общая касательная касается S1 и S2 в точках A и B соответственно. Прямая, параллельная AB, касается окружности S2 в точке C и пересекает окружность S1 в точках D и E. Докажите, что общая хорда описанных окружностей треугольников ABC и BDE, проходит через точку F.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .