ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи При каком наибольшем натуральном m число $m! \cdot 2022!$ будет факториалом натурального числа? В треугольнике $ABC$ точки $O$ и $H$ – центр описанной окружности и ортоцентр соответственно. Известно, что $BH$ – биссектриса угла $ABO$. Отрезок из точки $O$, параллельный стороне $AB$, пересекает сторону $AC$ в точке $K$. Докажите, что $AH=AK$. Вокруг равнобедренного треугольника ABC с основанием AB описана окружность и в точке B проведена касательная к ней. Из точки C проведён перпендикуляр CD к этой касательной, также проведены высоты AE и BF. Докажите, что точки D, E, F лежат на одной прямой. Среди чисел a + b, a – b, ab, a/b два положительных и два отрицательных. Является ли число b положительным или отрицательным? В школе провели турнир по настольному теннису. Турнир состоял из нескольких туров. В каждом туре каждый участник играл ровно в одном матче, а каждый матч судил один из не участвовавших в нем игроков. После нескольких туров оказалось, что каждый участник сыграл по одному разу с каждым из остальных. Может ли оказаться, что все участники турнира судили одинаковое количество встреч? В строку выписано 81 ненулевое число. Сумма любых двух соседних чисел положительна, а сумма всех чисел отрицательна. Каким может быть знак произведения всех чисел? Имеется 5 ненулевых чисел. Для каждых двух из них вычислены их сумма и произведение. Оказалось, что пять сумм положительны и пять сумм отрицательны. Сколько произведений положительны и сколько – отрицательны? Дан четырёхугольник ABCD, в котором AC = BD = AD; точки E и F – середины AB и CD соответственно; O – точка пересечения диагоналей четырёхугольника. Докажите, что EF проходит через точки касания вписанной окружности треугольника AOD с его сторонами AO и OD. Геометрическая прогрессия состоит из 37 натуральных чисел. Первый и последний члены прогрессии взаимно просты. В пятиугольнике ABCDE углы ABC и AED – прямые, AB = AE и BC = CD = DE. Диагонали BD и CE пересекаются в точке F. |
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
В трапеции ABCD основание BC в два раза меньше основания AD. Из вершины D опущен перпендикуляр DE на сторону AB. Докажите, что СЕ = CD.
Дан прямоугольный треугольник $ABC$ с прямым углом $C$, вне треугольника взята точка $D$, так что $\angle ADC=\angle BAC$ и отрезок $CD$ пересекает гипотенузу $AB$ в точке $E$. Известно, что расстояние от точки $E$ до катета $AC$ равно радиусу описанной окружности треугольника $ADE$. Найдите углы треугольника $ABC$.
В пятиугольнике ABCDE углы ABC и AED – прямые, AB = AE и BC = CD = DE. Диагонали BD и CE пересекаются в точке F.
Вокруг равнобедренного треугольника ABC с основанием AB описана окружность и в точке B проведена касательная к ней. Из точки C проведён перпендикуляр CD к этой касательной, также проведены высоты AE и BF. Докажите, что точки D, E, F лежат на одной прямой.
Вокруг прямоугольного треугольника ABC с прямым углом C описана окружность, на меньших дугах AC и BC взяты их середины – K и P соответственно. Отрезок KP пересекает катет AC в точке N. Центр вписанной окружности треугольника ABC – I. Найти угол NIC.
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке