ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Швецов Д.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 62]      



Задача 64808

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Симметрия помогает решить задачу ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 9,10

В треугольнике ABC  ∠B = 60°,  O – центр описанной окружности, BL – биссектриса. Описанная окружность треугольника BOL пересекает описанную окружность треугольника ABC вторично в точке D. Докажите, что  BDAC.

Прислать комментарий     Решение

Задача 64905

Темы:   [ Вписанные и описанные окружности ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Окружность с центром I касается сторон AB, BC, CA треугольника ABC в точках C1, A1, B1. Прямые AI, CI, B1I пересекают A1C1 в точках X, Y, Z соответственно. Докажите, что  ∠YB1Z = ∠XB1Z.

Прислать комментарий     Решение

Задача 65003

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Свойства биссектрис, конкуррентность ]
[ Средняя линия трапеции ]
[ Две касательные, проведенные из одной точки ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

В прямоугольном треугольнике ABC  (∠C = 90°)  биссектрисы AA1 и BB1 пересекаются в точке I. Пусть O – центр описанной окружности треугольника CA1B1. Докажите, что  OIAB.

Прислать комментарий     Решение

Задача 65005

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Диагонали вписанного четырёхугольника ABCD пересекаются в точке N. Описанные окружности треугольников ANB и CND повторно пересекают стороны BC и AD в точках A1, B1, C1, D1. Докажите, что четырёхугольник A1B1C1D1 вписан в окружность с центром N.

Прислать комментарий     Решение

Задача 65006

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вписанные и описанные окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9,10

На высоте BD треугольника ABC взята такая точка E, что  ∠AEC = 90°.  Точки O1 и O2 – центры описанных окружностей треугольников AEB и CEB; F, L – середины отрезков AC и O1O2. Докажите, что точки L, E, F лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 62]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .