Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Мартынова Н.

Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В треугольнике $ABC$ угол $A$ равен $120^\circ$. Точка $I$ – центр вписанной окружности, $M$ – середина $BC$. Прямая, проходящая через $M$ и параллельная $AI$, пересекает окружность с диаметром $BC$ в точках $E$ и $F$ (точки $A$ и $E$ лежат в одной полуплоскости относительно прямой $BC$). Прямая, проходящая через $E$ и перпендикулярная $FI$, пересекает прямые $AB$ и $AC$ в точках $P$ и $Q$. Найдите угол $PIQ$.

Вниз   Решение


Автор: Астахов В.

Дано натуральное число  n > 6.  Рассматриваются натуральные числа, лежащие в промежутке  (n(n – 1), n²)  и взаимно простые с n(n – 1).
Докажите, что наибольший общий делитель всех таких чисел равен 1.

ВверхВниз   Решение


Автор: Герко А.А.

В соревнованиях по n-борью участвуют 2n человек. Для каждого спортсмена известна его сила в каждом из видов программы. Соревнования проходят следующим образом: сначала все спортсмены участвуют в первом виде программы и лучшая половина из них выходит в следующий круг. Эта половина принимает участие в следующем виде и половина из них выходит в следующий круг, и т.д., пока в n-м виде программы не будет определен победитель. Назовем спортсмена возможным победителем, если можно так расставить виды спорта в программе, что он станет победителем.
  а) Докажите, что может так случиться, что хотя бы половина спортсменов является возможными победителями.
  б) Докажите, что число возможных победителей не превосходит  2nn.
  в) Докажите, что может так случиться, что возможных победителей ровно  2nn.

ВверхВниз   Решение


На складах двух магазинов хранится пшено: на первом складе на 16 тонн больше, чем на втором. Каждую ночь ровно в полночь владелец каждого магазина ворует у своего конкурента четверть имеющегося на его складе пшена и перетаскивает на свой склад. Через 10 ночей воришек поймали. На каком складе в момент их поимки было больше пшена и на сколько?

Вверх   Решение

Все задачи автора

Страница: 1 2 >> [Всего задач: 6]      



Задача 116663

Темы:   [ Обыкновенные дроби ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7,8

Записаны шесть положительных несократимых дробей, сумма числителей которых равна сумме их знаменателей. Паша перевёл каждую из неправильных дробей в смешанное число. Обязательно ли найдутся два числа, у которых одинаковы либо целые части, либо дробные части?

Прислать комментарий     Решение

Задача 116667

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 7,8

В треугольнике ABC биссектриса угла C пересекает сторону AB в точке M, а биссектриса угла A пересекает отрезок CM в точке T. Оказалось, что отрезки CM и AT разбили треугольник ABC на три равнобедренных треугольника. Найдите углы треугольника ABC.

Прислать комментарий     Решение

Задача 116669

Тема:   [ Процессы и операции ]
Сложность: 3
Классы: 5,6,7

На складах двух магазинов хранится пшено: на первом складе на 16 тонн больше, чем на втором. Каждую ночь ровно в полночь владелец каждого магазина ворует у своего конкурента четверть имеющегося на его складе пшена и перетаскивает на свой склад. Через 10 ночей воришек поймали. На каком складе в момент их поимки было больше пшена и на сколько?

Прислать комментарий     Решение

Задача 117014

Темы:   [ Разрезания (прочее) ]
[ Правило произведения ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 5,6,7

Для игры в шляпу Надя хочет разрезать лист бумаги на 48 одинаковых прямоугольников. Какое наименьшее количество разрезов ей придется сделать, если любые куски бумаги можно перекладывать, но нельзя сгибать, а Надя способна резать одновременно сколько угодно слоёв бумаги? (Каждый разрез – прямая линия от края до края куска.)

Прислать комментарий     Решение

Задача 65630

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 5,6,7

На сколько равных восьмиугольников можно разрезать квадрат размером 8×8? (Все разрезы должны проходить по линиям сетки.)

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .