ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Бакаев Е.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 107]      



Задача 116577

Темы:   [ Процессы и операции ]
[ Признаки делимости на 3 и 9 ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9

Одной операцией к числу можно либо прибавить 9, либо стереть в нём в любом месте цифру 1.
Из любого ли натурального числа A при помощи таких операций можно получить число A + 1?
(Если стирается единица в самом начале числа, а за ней сразу идут нули, то эти нули тоже стираются.)

Прислать комментарий     Решение

Задача 32898

Темы:   [ Процессы и операции ]
[ Инварианты ]
Сложность: 3+
Классы: 8,9,10

На длинной скамейке сидели мальчик и девочка. К ним по одному подошли еще 20 детей, и каждый из них садился между какими-то двумя уже сидящими. Назовём девочку отважной, если она садилась между двумя соседними мальчиками, а мальчика – отважным, если он садился между двумя соседними девочками. Когда все сели, оказалось, что мальчики и девочки сидят на скамейке, чередуясь. Сколько из них были отважными?

Прислать комментарий     Решение

Задача 64443

Темы:   [ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9,10

На боковых сторонах AB и AC равнобедренного треугольника ABC отметили соответственно точки K и L так, что  AK = CL  и  ∠ALK + ∠LKB = 60°.
Докажите, что  KL = BC.

Прислать комментарий     Решение

Задача 64644

Темы:   [ Числовые таблицы и их свойства ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 8,9

Клетки таблицы 5×7 заполнены числами так, что в каждом прямоугольнике 2×3 (вертикальном или горизонтальном) сумма чисел равна нулю. Заплатив 100 рублей, можно выбрать любую клетку и узнать, какое число в ней записано. Какого наименьшего числа рублей хватит, чтобы наверняка определить сумму всех чисел таблицы?

Прислать комментарий     Решение

Задача 64708

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Симметрия помогает решить задачу ]
[ Правильные многоугольники ]
Сложность: 3+
Классы: 8,9

Будем называть змейкой ломаную, у которой все углы между соседними звеньями равны, причём для любого некрайнего звена соседние с ним звенья лежат в разных полуплоскостях от этого звена (пример змейки см. на рисунке). Барон Мюнхгаузен заявил, что отметил на плоскости 6 точек и нашёл 6 разных способов соединить их (пятизвенной) змейкой (вершины каждой из змеек – отмеченные точки). Могут ли его слова быть правдой?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .