Страница:
<< 1 2 3 4 [Всего задач: 19]
|
|
|
Сложность: 4 Классы: 10,11
|
В игре Тантрикс-солитер возможны фишки 14 типов:

Каждую из них можно поворачивать, но нельзя переворачивать: именно поэтому первые 2 фишки разные – их нельзя получить друг из друга поворотом. Их разрешается прикладывать друг к другу так, чтобы линии одного цвета были продолжениями друг друга. У Саши было по одной фишке каждого типа, и он мог выложить их так, чтобы все синие линии образовывали «петлю», и при этом чтобы в картинке не было «дырок»:

Саша потерял фишку
. Докажите, что теперь он не сможет выложить оставшиеся 13 фишек так, чтобы в картинке не было «дырок», а все синие линии образовывали петлю.
|
|
|
Сложность: 4 Классы: 9,10,11
|
На микросхеме $2025$ различных элементов, некоторые пары из которых соединены проводами. Жора хочет раскидать элементы по $n$ платам так, чтобы никакие два элемента одной платы не были соединены проводами. Жора посчитал, что если плат будет всего две, то у него будет $2$ способа, а если плат $2025$ – то $2025~\cdot~2024^{2024}$ способов. Сколько проводов на микросхеме?
Все элементы и все платы разные, какие-то из плат могут не содержать элементов. Способы считаются разными, если хотя бы один элемент в способах находится на разных платах.
|
|
|
Сложность: 4+ Классы: 8,9,10,11
|
На сторонах AB, AC треугольника ABC взяли такие точки C1, B1 соответственно, что BB1 ⊥ CC1. Точка X внутри треугольника такова, что
∠XBC = ∠B1BA, ∠XCB = ∠C1CA. Докажите, что ∠B1XC1 = 90° – ∠A.
|
|
|
Сложность: 5 Классы: 9,10,11
|
Обозначим через S(k) сумму цифр натурального числа k. Натуральное число a назовём n-хорошим, если существует такая последовательность натуральных чисел a0, a1, ..., an, что an = a и ai+1 = ai – S(ai) при всех i = 0, 1, ..., n – 1. Верно ли, что для любого натурального n существует натуральное число, являющееся n-хорошим, но не являющееся (n+1)-хорошим?
Страница:
<< 1 2 3 4 [Всего задач: 19]