ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Антропов А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 [Всего задач: 14]      



Задача 65099

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9

Какое наибольшее количество белых и чёрных пешек можно расставить на клетчатой доске 9×9 (пешку, независимо от её цвета, можно ставить на любую клетку доски) так, чтобы никакая из них не била никакую другую (в том числе и своего цвета)? Белая пешка бьёт две соседние по диагонали клетки на соседней горизонтали с бóльшим номером, а чёрная – две соседние по диагонали клетки на соседней горизонтали с меньшим номером (см. рисунок).

Прислать комментарий     Решение

Задача 66767

Темы:   [ Внутренность и внешность. Лемма Жордана ]
[ Четность и нечетность ]
Сложность: 4
Классы: 10,11

В игре Тантрикс-солитер возможны фишки 14 типов:

Каждую из них можно поворачивать, но нельзя переворачивать: именно поэтому первые 2 фишки разные – их нельзя получить друг из друга поворотом. Их разрешается прикладывать друг к другу так, чтобы линии одного цвета были продолжениями друг друга. У Саши было по одной фишке каждого типа, и он мог выложить их так, чтобы все синие линии образовывали «петлю», и при этом чтобы в картинке не было «дырок»:

Саша потерял фишку . Докажите, что теперь он не сможет выложить оставшиеся 13 фишек так, чтобы в картинке не было «дырок», а все синие линии образовывали петлю.

Прислать комментарий     Решение

Задача 65367

Темы:   [ Две пары подобных треугольников ]
[ Симметрия помогает решить задачу ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4+
Классы: 8,9,10,11

На сторонах AB, AC треугольника ABC взяли такие точки C1, B1 соответственно, что  BB1CC1.  Точка X внутри треугольника такова, что
XBC = ∠B1BA,  ∠XCB = ∠C1CA.  Докажите, что  ∠B1XC1 = 90° – ∠A.

Прислать комментарий     Решение

Задача 65245

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
[ Доказательство от противного ]
[ Подсчет двумя способами ]
[ Сочетания и размещения ]
Сложность: 5
Классы: 9,10,11

  Обозначим через S(k) сумму цифр натурального числа k. Натуральное число a назовём n-хорошим, если существует такая последовательность натуральных чисел a0, a1, ..., an, что  an = a  и  ai+1 = ai – S(ai)  при всех  i = 0, 1, ..., n – 1.  Верно ли, что для любого натурального n существует натуральное число, являющееся n-хорошим, но не являющееся (n+1)-хорошим?

Прислать комментарий     Решение

Страница: << 1 2 3 [Всего задач: 14]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .