ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Креков Д.

Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите неравенство для положительных значений переменных:   (1 + x/y)(1 + y/z)(1 + z/x) ≥ 8.

Вниз   Решение


Сумма нескольких не обязательно различных положительных чисел не превосходила 100. Каждое из них заменили на новое следующим образом: сначала прологарифмировали по основанию 10, затем округлили стандартным образом до ближайшего целого числа и, наконец, возвели 10 в найденную целую степень. Могло ли оказаться так, что сумма новых чисел превышает 300?

Вверх   Решение

Все задачи автора

Страница: << 1 2 [Всего задач: 8]      



Задача 66595

Темы:   [ Индукция ]
[ Многочлены ]
Сложность: 5
Классы: 10,11

Автор: Креков Д.

Верхней целой частью числа $x$ называют наименьшее целое число, большее или равное $x$. Докажите, что существует такое вещественное число $A$, что для любого натурального $n$ расстояние от верхней целой части $A^n$ до ближайшего квадрата натурального числа всегда равно 2.
Прислать комментарий     Решение


Задача 66599

Темы:   [ Индукция ]
[ Многочлены ]
Сложность: 5
Классы: 10,11

Автор: Креков Д.

Верхней целой частью числа $x$ называют наименьшее целое число, большее или равное $x$. Существует ли такое число $A$, что для любого натурального $n$ расстояние от верхней целой части $A^n$ до ближайшего квадрата натурального числа всегда равно 2?
Прислать комментарий     Решение


Задача 66911

Темы:   [ Индукция в геометрии ]
[ Многочлены ]
Сложность: 5
Классы: 10,11

Автор: Креков Д.

Найдите хоть одно вещественное число $A$ со свойством: для любого натурального $n$ расстояние от верхней целой части числа $A^n$ до ближайшего квадрата целого числа равно 2. (Верхняя целая часть числа $x$ – наименьшее целое число, не меньшее $x$.)
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .