Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Зиманов Т.

Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Докажите, что для любого тетраэдра его самый маленький двугранный угол (из шести) не больше чем двугранный угол правильного тетраэдра.

Вниз   Решение


Даны два треугольника ABC и A'B'C', имеющие общие описанную и вписанную окружности, и точка P, лежащая внутри обоих треугольников.
Докажите, что сумма расстояний от P до сторон треугольника ABC равна сумме расстояний от P до сторон треугольника A'B'C'.

ВверхВниз   Решение


Автор: Ягудин М.

Дан тетраэдр ABCD. В грани ABC и ABD вписаны окружности с центрами O1, O2, касающиеся ребра AB в точках T1, T2. Плоскость πAB проходит через середину отрезка T1T2 и перпендикулярна O1O2. Аналогично определяются плоскости πAC, πBC, πAD, πBD, πCD. Докажите, что все эти шесть плоскостей проходят через одну точку.

ВверхВниз   Решение


Автор: Тебо В.

Пусть A1, B1 и C1 — основания высот AA1, BB1 и CC1 треугольника ABC. Докажите, что прямые Эйлера треугольников AB1C1, BA1C1 и CA1B1 пересекаются на окружности девяти точек треугольника ABC.

ВверхВниз   Решение


Найдите необходимые и достаточные условия, которым должны удовлетворять числа a, b, α и β, чтобы прямоугольник размером a×b можно было разрезать на прямоугольники размером α×β. Например, можно ли прямоугольник размером 50×60 разрезать на прямоугольники размером
а) 20×15;   б) 5×8;   в) 6,25×15;   г)  

ВверхВниз   Решение


Пусть $ABC$ – треугольник Понселе, точка $A_1$ симметрична $A$ относительно центра вписанной окружности $I$, точка $A_2$ изогонально сопряжена $A_1$ относительно $ABC$. Найдите ГМТ $A_2$.

ВверхВниз   Решение


На стороне AB выпуклого четырёхугольника ABCD взяты точки K и L (точкаK лежит между A и L), а на стороне CD взяты точки M и N (точка M между C и N). Известно, что  AK = KN = DN  и  BL = BC = CM.  Докажите, что если BCNK – вписанный четырёхугольник, то и ADML тоже вписан.

Вверх   Решение

Все задачи автора

Страница: 1 [Всего задач: 1]      



Задача 65701

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Хорды и секущие (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 9,10,11

На стороне AB выпуклого четырёхугольника ABCD взяты точки K и L (точкаK лежит между A и L), а на стороне CD взяты точки M и N (точка M между C и N). Известно, что  AK = KN = DN  и  BL = BC = CM.  Докажите, что если BCNK – вписанный четырёхугольник, то и ADML тоже вписан.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .