ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что выпуклый 13-угольник нельзя разрезать на параллелограммы. В гости пришло 10 гостей и каждый оставил в коридоре пару калош. Все пары калош имеют разные размеры. Гости начали расходиться по одному, одевая любую пару калош, в которые они могли влезть (т.е. каждый гость мог надеть пару калош, не меньшую, чем его собственные). В какой-то момент обнаружилось, что ни один из оставшихся гостей не может найти себе пару калош, чтобы уйти. Какое максимальное число гостей могло остаться? Конструктор состоит из набора прямоугольных параллелепипедов. Все их можно поместить в одну коробку, также имеющую форму прямоугольного параллелепипеда. В бракованном наборе одно из измерений каждого параллелепипеда оказалось меньше стандартного. Всегда ли у коробки, в которую укладывается набор, тоже можно уменьшить одно из измерений (параллелепипеды укладываются в коробку так, что их рёбра параллельны рёбрам коробки)? Два парома одновременно отходят от противоположных берегов реки и пересекают её перпендикулярно берегам. Скорости паромов постоянны, но не равны. Паромы встречаются на расстоянии 720 м от берега, после чего продолжают движение. На обратном пути они встречаются в 400 м от другого берега. Какова ширина реки? 10 книг стоят больше 11 рублей, а 9 книг стоят меньше 10 рублей. Сколько стоит одна книга? а) Квадрат со стороной 1 покрыт несколькими меньшими квадратами
со сторонами, параллельными его сторонам. Докажите, что среди
них можно выбрать непересекающиеся квадраты, сумма площадей
которых не меньше 1/9.
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]
Назовём раскраску доски 8×8 в три цвета хорошей, если в любом уголке из пяти клеток присутствуют клетки всех трёх цветов. (Уголок из пяти клеток – это фигура, получающаяся из квадрата 3×3 вырезанием квадрата 2×2.) Докажите, что количество хороших раскрасок не меньше чем 68.
На столе лежат пять часов со стрелками. Разрешается любые несколько из них перевести вперёд. Для каждых часов время, на которое при этом их перевели, назовём временем перевода. Требуется все часы установить так, чтобы они показывали одинаковое время. За какое наименьшее суммарное время перевода это можно гарантированно сделать?
Имеются пять внешне одинаковых гирь с попарно различными массами. Разрешается выбрать любые три из них A, B и C и спросить, верно ли,
что
На концах клетчатой полоски размером 1×101 клеток стоят две фишки: слева – фишка первого игрока, справа – второго. За ход разрешается сдвинуть свою фишку в направлении противоположного края полоски на 1, 2, 3 или 4 клетки. При этом разрешается перепрыгивать через фишку соперника, но запрещается ставить свою фишку на одну клетку с ней. Выигрывает тот, кто первым достигнет противоположного края полоски. Кто выиграет при правильной игре: тот, кто ходит первым, или его соперник?
На отрезке [0, N] отмечены его концы и еще две точки так, что длины отрезков, на которые разбился отрезок [0, N], целые и взаимно просты в совокупности. Если нашлись такие две отмеченные точки A и B, что расстояние между ними кратно 3, то можно разделить отрезок AB на три равных части, отметить одну из точек деления и стереть одну из точек A, B. Верно ли, что за несколько таких действий можно отметить любую наперед заданную целую точку отрезка [0, N]?
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке