|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Вячеслав Викторович Произволов (род. в 1939) - математик, к.ф-м.н., автор книги "Задачи на вырост" |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите неравенство для положительных значений переменных: a²(1 + b4) + b²(1 + a4) ≤ (1 + a4)(1 + b4).
В треугольнике ABC перпендикуляр, проходящий через середину
стороны AC, пересекает сторону BC в точке M, а перпендикуляр,
проходящий через сторону BC пересекает сторону AC в точке N.
Прямая MN перпендикулярна AB и
MN =
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 87]
Грани выпуклого многогранника – подобные треугольники.
На стороне AB треугольника ABC взята такая точка P, что AP = 2PB, а на стороне AC – ее середина, точка Q. Известно, что CP = 2PQ.
Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны.
Докажите, что из шести ребер тетраэдра можно сложить два треугольника.
Существует ли в пространстве куб, расстояния от вершин которого до данной плоскости равны 0, 1, 2, 3, 4, 5, 6, 7?
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 87] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|