|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Бинарный метод возведения в степень. Предположим, что необходимо возвести число x в степень n. Если, например, n = 16, то это можно сделать выполнив 15 умножений x16 = x . x . ... . x, а можно обойтись лишь четырьмя:
x1 = x . x = x2, x2 = x1 . x1 = x4, x3 = x2 . x2 = x8, x4 = x3 . x3 = x16.
Пусть
n = 2e1 + 2e2 +...+ 2er (e1 > e2 >...> er Придумайте алгоритм, который позволял
бы вычислять xn при помощи
b(n) = e1 + умножений, где
Решая задачу: "Какое значение принимает выражение x2000 + x1999 + x1998 + 1000x1000 + 1000x999 + 1000x998 + 2000x³ + 2000x² + 2000x + 3000 |
Страница: << 1 2 [Всего задач: 8]
Через две вершины треугольника проведены прямые, разбивающие его на три треугольника и четырёхугольник. а) Могут ли площади всех четырёх частей быть равны? б) Какие три из этих частей могут иметь равные площади? Во сколько раз отличается от них площадь четвёртой части?
Попробуйте изучить другие варианты этой игры: когда соседними с данной считаем только клетки, имеющие с ней общую сторону; когда плоскость разбита не на квадраты, а на правильные шестиугольники; когда первому разрешено ставить сразу
Страница: << 1 2 [Всего задач: 8] |
||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|