ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Валерий Анатольевич Сендеров (1945 - 2014 гг.) - математик, педагог, с 70-х годов - постоянный участник проведения московских и российских математических олимпиад. Автор нескольких десятков научных статей в отечественных и зарубежных изданиях, научно-популярных работ в журнале Квант. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Три окружности ω1, ω2 и ω3 радиуса r проходят через точку S и касаются внутренним образом окружности ω радиуса R (R > r) в точках T1, T2 и T3 соответственно. Докажите, что прямая T1T2 проходит через вторую (отличную от S) точку пересечения окружностей ω1 и ω2. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 90]
Cлава перемножил первые n натуральных чисел, а Валера перемножил первые m чётных натуральных чисел (n и m больше 1). В результате у них получилось одно и то же число. Докажите, что хотя бы один из мальчиков ошибся.
Приведите пример многочлена P(x) степени 2001, для которого P(x) + P(1 – x) ≡ 1.
Найдите все целые числа x и y, удовлетворяющие уравнению x4 – 2y² = 1.
Отрезки AB и CD лежат на двух сторонах угла BOD (A лежит между O и B, C – между O и D). Через середины отрезков AD и BC проведена прямая, пересекающая стороны угла в точках M и N (M, A и B лежат на одной стороне угла; N, C и D – на другой).
Докажите, что
Рассматриваются 2000 чисел: 11, 101, 1001, ... . Докажите, что среди этих чисел не менее 99% составных.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 90]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке