Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Белоснежка вырезала из батиста большой квадрат и положила его в сундук. Пришел Первый Гном, достал квадрат, разрезал его на четыре квадрата и положил все четыре снова в сундук. Потом пришел Второй Гном, достал один из квадратов, разрезал его на четыре квадрата и положил все четыре снова в сундук. Потом пришел Третий Гном. И он достал один из квадратов, разрезал его на четыре квадрата и положил все четыре снова в сундук. То же самое проделали все остальные гномы. Сколько квадратов лежало в сундуке после того, как ушел Седьмой Гном?

Вниз   Решение


В колоде часть карт лежит рубашкой вниз. Время от времени Петя вынимает из колоды пачку из одной или нескольких подряд идущих карт, в которой верхняя и нижняя карты лежат рубашкой вниз, переворачивает всю пачку как одно целое и вставляет её в то же место колоды (если "пачка" состоит лишь из одной карты, то требуется только, чтобы она лежала рубашкой вниз). Докажите, что в конце концов все карты лягут рубашкой вверх, как бы ни действовал Петя.

ВверхВниз   Решение


В строку записаны в некотором порядке натуральные числа от 1 до 1993. Над строкой производится следующая операция: если на первом месте стоит число k, то первые k чисел в строке переставляются в обратном порядке. Докажите, что через несколько таких операций на первом месте окажется число 1.

ВверхВниз   Решение


Клетчатая полоска 1×1000000 разбита на 100 сегментов. В каждой клетке записано целое число, причём в клетках, лежащих в одном сегменте, числа совпадают. В каждую клетку поставили по фишке. Затем сделали такую операцию: все фишки одновременно передвинули, каждую – на то количество клеток вправо, которое указано в её клетке (если число отрицательно, то фишка двигается влево); при этом оказалось, что в каждую клетку снова попало по фишке. Эту операцию повторяют много раз. Для каждой фишки первого сегмента подсчитали, через сколько операций она впервые снова окажется в этом сегменте. Докажите, что среди полученных чисел не более 100 различных.

ВверхВниз   Решение


Автор: Фольклор

Известно, что  tg α + tg β = p,  ctg α + ctg β = q.  Найдите   tg(α + β).

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



Задача 86103

Тема:   [ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9

По кругу расставлены 2005 натуральных чисел.
Доказать, что найдутся два соседних числа, после выкидывания которых оставшиеся числа нельзя разбить на две группы с равной суммой.

Прислать комментарий     Решение

Задача 86106

Тема:   [ Квадратные уравнения. Теорема Виета ]
Сложность: 3+
Классы: 8,9,10

Дискриминанты трёх приведённых квадратных трёхчленов равны 1, 4 и 9.
Докажите, что можно выбрать по одному корню каждого из них так, чтобы их сумма равнялась сумме оставшихся корней.

Прислать комментарий     Решение

Задача 86107

Темы:   [ Деление с остатком ]
[ Примеры и контрпримеры. Конструкции ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3+
Классы: 7,8,9

Существует ли 2005 таких различных натуральных чисел, что сумма любых 2004 из них делится на оставшееся число?

Прислать комментарий     Решение

Задача 86118

Темы:   [ Системы тригонометрических уравнений и неравенств ]
[ Производная и экстремумы ]
Сложность: 3+
Классы: 11

Числа a и b таковы, что первое уравнение системы
{ sin x+a=bx
cos x=b

имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.
Прислать комментарий     Решение


Задача 86124

Темы:   [ Системы тригонометрических уравнений и неравенств ]
[ Производная и экстремумы ]
Сложность: 3+
Классы: 11

Числа a и b таковы, что первое уравнение системы
{ cos x=ax+b
sin x+a=0

имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .