ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Множество чисел А заданы условиями:
а) 1 принадлежит А
б) если k принадлежит А, то 2*k+1 принадлежит А и 3*k принадлежит А, и других чисел множество А не содержит.

Напечатать первые n<1000 чисел множества А в порядке возрастания. Вот начало этой распечатки: 1,3,4,7,9,10,13,15,19,...

Вниз   Решение


Пусть f (x, y) = x2 + y2 + a1x + b1y + c1 и g(x, y) = x2 + y2 + a2x + b2y + c2. Докажите, что для любого вещественного $ \lambda$$ \ne$1 уравнение f - $ \lambda$g = 0 задаёт окружность из пучка окружностей, порождённого окружностями f = 0 и g = 0.

Вверх   Решение

Задачи

Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 6702]      



Задача 54125

Темы:   [ Параллелограмм Вариньона ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

Найдите стороны и углы четырёхугольника с вершинами в серединах сторон ромба, диагонали которого равны 6 и 10.

Прислать комментарий     Решение


Задача 54163

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Перенос стороны, диагонали и т.п. ]
Сложность: 3
Классы: 8,9

В равнобедренной трапеции острый угол равен 60o. Докажите, что меньшее основание равно разности большего основания и боковой стороны.

Прислать комментарий     Решение


Задача 54166

Темы:   [ Средняя линия трапеции ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Расстояния от концов диаметра окружности до некоторой касательной равны a и b. Найдите радиус окружности.

Прислать комментарий     Решение


Задача 54167

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Описанные четырехугольники ]
Сложность: 3
Классы: 8,9

Окружность касается всех сторон равнобедренной трапеции. Докажите, что боковая сторона трапеции равна средней линии.

Прислать комментарий     Решение


Задача 54233

Темы:   [ Площадь трапеции ]
[ Проекции оснований, сторон или вершин трапеции ]
Сложность: 3
Классы: 8,9

Основания равнобедренной трапеции равны a и b (a > b), острый угол равен 45o. Найдите площадь трапеции.

Прислать комментарий     Решение


Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .