ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Запишите с помощью неравенств следующие множества точек на комплексной плоскости:
  а) полуплоскость, расположенная строго левее мнимой оси;
  б) первый квадрант, не включая координатных осей;
  в) множество точек, отстоящих от мнимой оси на расстояние, меньшее 2;
  г) полукруг радиуса 1 (без полуокружности) с центром в точке O, расположенный не выше действительной оси.

Вниз   Решение


На сторонах AD и CD параллелограмма ABCD расположены точки M и N соответственно, причём  AM : MD = 2 : 7,  CN : ND = 3 : 5.  Прямые CM и BN пересекаются в точке O. Найдите отношения  ON : OB  и  OC : OM.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 59]      



Задача 58444  (#30.036)

Тема:   [ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 6+
Классы: 10,11

Докажите, что прямые, соединяющие противоположные точки касания описанного четырехугольника, проходят через точку пересечения диагоналей.
Прислать комментарий     Решение


Задача 58445  (#30.037)

Тема:   [ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 6+
Классы: 10,11

Докажите, что прямые, соединяющие вершины треугольника с точками касания противоположных сторон с вписанной окружностью, пересекаются в одной точке.
Прислать комментарий     Решение


Задача 58446  (#30.038)

Тема:   [ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 6+
Классы: 10,11

а) Через точку P проводятся всевозможные секущие окружности S. Найдите геометрическое место точек пересечения касательных к окружности S, проведенных в двух точках пересечения окружности с секущей.
б) Через точку P проводятся всевозможные пары секущих AB и CD окружности S (A, B, C, D — точки пересечения с окружностью). Найдите геометрическое место точек пересечения прямых AC и BD.
Прислать комментарий     Решение


Задача 58447  (#30.039)

Тема:   [ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 6+
Классы: 10,11

Даны окружность S, прямая l, точка M, лежащая на S и не лежащая на l, и точка O, не лежащая на S. Рассмотрим преобразование P прямой l, являющееся композицией проектирования l на S из M, S на себя из O и S на l из M, т. е. P(A) — пересечение прямых l и MC, где C — отличная от B точка пересечения S с прямой OB, а B — отличная от A точка пересечения S с прямой MA. Докажите, что преобразование P проективно.
Прислать комментарий     Решение


Задача 58448  (#30.040)

Тема:   [ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 6+
Классы: 10,11

Даны окружность S, точка P, расположенная вне S, и прямая l, проходящая через P и пересекающая окружность в точках A и B. Точку пересечения касательных к окружности в точках A и B обозначим через K.
а) Рассмотрим всевозможные прямые, проходящие через P и пересекающие AK и BK в точках M и N. Докажите, что геометрическим местом точек пересечения отличных от AK и BK касательных к S, проведенных из точек M и N, является некоторая прямая, проходящая через K, из которой выкинуто ее пересечение с внутренностью S.
б) Будем на окружности разными способами выбирать точку R и проводить прямую, соединяющую отличные от R точки пересечения прямых RK и RP с S. Докажите, что все полученные прямые проходят через одну точку, и эта точка лежит на l.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .