ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Докажите, что из пяти попарно различных по величине квадратов нельзя сложить прямоугольник.
б) Докажите, что из шести попарно различных по величине квадратов нельзя сложить прямоугольник.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 83]      



Задача 30859  (#016)

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Обыкновенные дроби ]
[ Произведения и факториалы ]
Сложность: 4-
Классы: 6,7

Рассмотрим число     Докажите, что оно

а) меньше 1/10;   б) меньше 1/12;   в) больше 1/15.

Прислать комментарий     Решение

Задача 30860  (#017)

Тема:   [ Неравенство Коши ]
Сложность: 2+
Классы: 8,9

Докажите, что     при  x ≥ 0.

Прислать комментарий     Решение

Задача 30861  (#018)

Тема:   [ Неравенство Коши ]
Сложность: 2+
Классы: 8,9

Докажите, что  x + 1/x ≥ 2  при  x > 0.

Прислать комментарий     Решение

Задача 30862  (#019)

Тема:   [ Неравенство Коши ]
Сложность: 2
Классы: 6,7

Докажите, что  ½ (x² + y²) ≥ xy  при любых x и y.

Прислать комментарий     Решение

Задача 30863  (#020)

Тема:   [ Неравенство Коши ]
Сложность: 2+
Классы: 7

Докажите, что  2(x² + y²) ≥ (x + y)²  при любых x и y.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 83]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .