ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи От A до B 999 км. Вдоль дороги стоят километровые столбы, на которых написаны расстояния до A и до B:
Конь вышел с поля a1 и через несколько ходов вернулся на него. Докажите, что он сделал чётное число ходов. Дано n попарно не сонаправленных векторов (n На отрезке длиной 1 закрашено несколько отрезков,
причем расстояние между любыми двумя закрашенными
точками не равно 0, 1. Докажите, что сумма длин закрашенных
отрезков не превосходит 0, 5.
|
Страница: << 1 2 3 >> [Всего задач: 13]
В треугольнике ABC проведены биссектриса AD и средняя линия A1C1. Прямые AD и A1C1 пересекаются в точке K. Докажите, что 2A1K = |b – c|.
На сторонах AD и CD параллелограмма ABCD взяты точки M и N так, что MN || AC. Докажите, что SABM = SCBN.
На диагонали AC параллелограмма ABCD взяты точки P и Q так, что AP = CQ. Точка M такова, что PM || AD и QM || AB.
Три прямые, параллельные сторонам данного треугольника, отсекают от него три треугольника, причём остается равносторонний шестиугольник.
Три прямые, параллельные сторонам треугольника, пересекаются в одной точке, причем стороны треугольника высекают на этих прямых отрезки длиной x. Найдите x, если длины сторон треугольника равны a, b и c.
Страница: << 1 2 3 >> [Всего задач: 13]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке