|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Десять человек захотели основать клуб. Для этого им необходимо собрать определённую сумму вступительных взносов. Если бы организаторов было на пять человек больше, то каждый из них должен был бы внести на 100 долларов меньше. Сколько денег внёс каждый? Даны отрезок AB, непараллельная ему прямая l и точка M на ней. С помощью одной двусторонней линейки постройте точки пересечения прямой l с окружностью радиуса AB с центром M. Dписанная окружность треугольника ABC касается сторон AB, BC и AC в точках C1, A1 и B1 соответственно. Известно, что AA1 = BB1 = CC1. Докажите, что треугольник ABC правильный. |
Страница: 1 2 >> [Всего задач: 6]
В чемпионате России по футболу участвуют 16 команд. Каждая команда играет с каждой из остальных по 2 матча.
Трое друзей играли в шашки. Один из них сыграл 25 игр, а другой – 17 игр. Мог ли третий участник сыграть а) 34; б) 35; в) 56 игр?
Сборная России по футболу выиграла у сборной Туниса со счетом 9 : 5. Докажите, что по ходу матча был момент, когда сборной России оставалось забить столько голов, сколько уже забила сборная Туниса.
Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)?
Учащиеся 57-й школы решили провести чемпионат по мини-футболу. Так как ворота на школьном дворе разного размера, то игроки хотят составить расписание игр так, чтобы:
Страница: 1 2 >> [Всего задач: 6] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|