ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 3]      



Задача 79590  (#1)

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Уравнения высших степеней (прочее) ]
Сложность: 3
Классы: 7,8,9,10,11

Решите уравнение $$(1 + x + x^2)(1 + x + \ldots + x^{10}) = (1 + x + \ldots + x^6)^2.$$
Прислать комментарий     Решение


Задача 79592  (#3)

Темы:   [ Правильные многоугольники ]
[ Свойства биссектрис, конкуррентность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9,10,11

Докажите, что в правильном двенадцатиугольнике $A_1 A_2 \ldots A_{12}$ диагонали $A_1A_5$, $A_2A_6$, $A_3A_8$ и $A_4A_{11}$ пересекаются в одной точке.

Прислать комментарий     Решение

Задача 79594  (#5)

Тема:   [ Числовые таблицы и их свойства ]
Сложность: 5-
Классы: 8,9,10,11

В клетках таблицы $15\times 15$ расставлены ненулевые числа так, что каждое из них равно произведению всех чисел, стоящих в соседних клетках (соседними называем клетки, имеющие общую сторону). Докажите, что все числа в таблице положительны.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .