|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Даны три приведённых квадратных трехчлена: P1(x), P2(x) и P3(x). Докажите, что уравнение |P1(x)| + |P2(x)| = |P3(x)| имеет не более восьми корней. Дама сдавала в багаж рюкзак, чемодан, саквояж и корзину. Известно, что чемодан весит больше, чем рюкзак; саквояж и рюкзак весят больше, чем чемодан и корзина; корзина и саквояж весят столько же, сколько чемодан и рюкзак. Перечислите вещи дамы в порядке убывания их веса. |
Страница: 1 2 3 >> [Всего задач: 15]
Решите систему:
Существует ли выпуклый 1000-угольник, у которого все углы выражаются целыми числами градусов?
Существует ли такая цифра а, что aaa(a–1) = (а – 1)а–2.
Числовая функция f такова, что для любых x и y выполняется равенство f(x + y) = f(x) + f(y) + 80xy. Найдите f(1), если f(0,25) = 2.
Четырёхугольник АВСD – вписанный. Лучи АВ и DС пересекаются в точке M, а лучи ВС и AD –
в точке N. Известно, что ВМ = DN.
Страница: 1 2 3 >> [Всего задач: 15] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|